Advertisement

Terrestrial and maritime taphonomy: differential effects on spatial distribution of a Late Pleistocene continental drowned faunal bone assemblage from the Pacific coast of Chile

  • Patricio López
  • Isabel Cartajena
  • Diego Carabias
  • Carla Morales
  • David Letelier
  • Valentina Flores
Original Paper

Abstract

Site GNL Quintero 1 (GNLQ1), located on the central coast of Chile, is the only documented Late Pleistocene drowned terrestrial site along the Pacific Coast of South America. Faunal evidence at the site is varied, and so far, remains of the following taxa have been found: extinct Camelidae, Cervidae, Equidae, Mylodontidae, Xenarthra, but also Myocastoridae, Canidae and Octodontidae. Both geological and paleoenvironmental data indicate that GNLQ1 developed in a floodplain or low-energy environment during the Last Glacial Maximum (LGM). Prior to the post-glacial rising of the sea level, the site would have been located several kilometres inland as the paleoshoreline was farther out on the continental shelf. In accordance with this background, the present study addresses the analysis of the spatial distribution of the bone deposits of GNLQ1 by considering both scenarios, the terrestrial phase related to the formation and modification of the fossil assemblage prior to the transgression, and the marine phase, subsequent to inundation. Results indicate modifications related to low-energy flow environment and carnivore activity dominated during the terrestrial phase and the action of marine organisms during the marine phase. Other taphonomic modifications are not easily attributable to either one or the other environmental context.

Keywords

Late Pleistocene Extinct fauna Taphonomy Underwater archaeology Central Chile South America 

Notes

Acknowledgments

This study has benefited from the financial support of GNL Quintero S.A. The authors would like to thank the editors and two anonymous reviewers of an earlier draft of this manuscript.

References

  1. Achyuthan H (2004) Paleopedology of ferricrete horizons around Chennai, Tamil Nadu, India. Rev Mex Cienc Geol 21(1):133–143Google Scholar
  2. Andrews P (1995) Time resolution in the Pasalar Miocene fauna. J Hum Evol 28:343–358CrossRefGoogle Scholar
  3. Behrensmeyer AK (1978) Taphonomic and ecological information from bone weathering. Paleobiology 4:150–162Google Scholar
  4. Behrensmeyer AK (1982) Time resolution in fluvial vertebrate assemblages. Paleobiology 8:211–227Google Scholar
  5. Benito-Calvo A, de la Torre I (2011) Analysis of orientation patterns in Olduvai bed I assemblages using GIS techniques: implications for site formation processes. J Hum Evol 61:50–60CrossRefGoogle Scholar
  6. Binford LR (1981) Bones: ancient men and modern myths. Academic Press, New YorkGoogle Scholar
  7. Boessnecker R (2013) Taphonomic implications of barnacle encrusted sea lion bones from the Middle Pleistocene Port Orford Formation, coastal Oregon. J Paleo 87:657–663CrossRefGoogle Scholar
  8. Borrero LA, Martin F (1996) Tafonomía de carnívoros: un enfoque regional. In: Gómez Otero J (ed) Arqueología. Sólo Patagonia. CENPAT (CONICET), Puerto Madryn, pp. 189–206Google Scholar
  9. Borrero LA, Martin F, Vargas J (2005) Tafonomía de la interacción entre pumas y guanacos en el Parque Nacional Torres del Paine, Chile. Magallania 33(1):95–114CrossRefGoogle Scholar
  10. Borrego J, Monterde J, Morales JA, Carro B, López N (2003) Morfología de la pirita diagenética en sedimentos recientes de estuario del Río Odiel (SO de España). Geogaceta 33:99–101Google Scholar
  11. Bromage TG (1984) Interpretation of scanning electron microscopic images of abraded forming bone surfaces. Am J Phys Anthropol 64:161–178CrossRefGoogle Scholar
  12. Bronk Ramsey C, Lee S (2013) Recent and planned developments of the program OxCal. Radiocarbon 55:3–4Google Scholar
  13. Brown A, Ellis C, Roseff R (2010) Holocene sulphur-rich palaeochannel sediments: diagenetic conditions, magnetic properties and archaeological implications. J Archaeol Sci 37(1):21–29CrossRefGoogle Scholar
  14. Carabias D, Cartajena I, Simonetti R, López P, Morales C, Ortega C (2014) Submerged paleolandscapes: site GNL Quintero 1 (GNLQ1) and the first evidence from the Pacific coast of South America. In: Evans A, Flemming N, Flatman J (eds) Prehistoric archaeology of the continental shelf. A global review. Springer, New York, pp. 131–149CrossRefGoogle Scholar
  15. Cartajena I, López P, Carabias D, Morales C., Vargas G (2011) Arqueología subacuatica y tafonomía: recientes avances de sitios finipleistocénicos sumergidos en la Costa Pacífico de Chile Central. Revista Antípoda 13:201-225.Google Scholar
  16. Cartajena I, López P, Carabias D, Morales C, Vargas G, Ortega C (2013) First evidence of fan underwater Final Pleistocene terrestrial extinct faunal bone assemblage from central Chile (South America): taxonomic and taphonomic analyses. Quat Int 305:45–55CrossRefGoogle Scholar
  17. Cherkinsky A (2009) Can we get a good radiocarbon age from “bad bone”? Determining the reliability of radiocarbon age from bioapatite. Radiocarbon 51:647–655Google Scholar
  18. Cherkinsky A, Trindade Dantas MA, Cozzuol MA (2013) Bioapatite 14C age of giant mammals from Brazil. Radiocarbon 55:454–471Google Scholar
  19. Cook E, Trueman C (2009) Taphonomy and geochemistry of a vertebrate microremains assemblage from the Early Triassic karst deposits at Czatkowice 1, southern Poland. Palaeontol Pol 65:17–30Google Scholar
  20. Dawson EY (1962) Marine red algae of Pacific Mexico. VII. Ceramiales: Ceramiaceae, Delesseriaceae. Allan Hancock Pacific Expedition 26:1–207Google Scholar
  21. Domínguez-Rodrigo M, Pickering TR, Mabulla A, Musiba C, Baquedano E, Ashley G, Diez-Martin F, Santonja M, Uribelarrea D, Barba R, Yravedra J, Barboni D, Arriaza C, Gidna A (2012) Autochthony and orientation patterns in Olduvai bed I: a re-examination of the status of post-depositional biasing of archaeological assemblages from FLK North (FLKN). J Archaeol Sci 39:2116–2127CrossRefGoogle Scholar
  22. Domínguez-Rodrigo M, García-Pérez A (2013) Testing accuray of different A-axis types for measuring the orientation of bones in the archaeological and paleontological record. PLoS One 2013 8(7):e68955. doi: 10.1371/journal.pone.0068955
  23. Dunbar J, Webb D, Cring D (1989) Culturally and naturally modified bones from a Paleoindian site in the Aucilla River, North Florida. In: Bonnichsen R, Sorg M (eds) Bone modifications. Center for the Study of the First Americans, Orono, pp. 473–497Google Scholar
  24. Elkin D (1995) Volume density of South American camelid skeletal parts. Int J Osteoarchaeol 5:29–37CrossRefGoogle Scholar
  25. Faith JT, Behrensmeyer AK (2006) Changing patterns of carnivore modification in a landscape bone assemblage, Amboseli Park, Kenya. J Archaeol Sci 33:1718–1733CrossRefGoogle Scholar
  26. Fernández-Jalvo Y, Andrews P (2003) Experimental abrasión of water effects on bone fragments. J Taphonomy 1(3):147–163Google Scholar
  27. Fernández-Jalvo Y, Cáceres I (2010) Tafonomía e industria lítica: marcas de corte y materias primas. In: Mata Almonte E (coord) Cuaternario y Arqueología: Homenaje a Francisco Giles Pacheco, ASPHA, Cádiz, pp 277–290.Google Scholar
  28. González A, Terrazas A, Stinnesbeck W, Stinnesbeck BM, Avilés J, Rojas C, Padilla JM, Velásquez A, Acevez E, Frey E (2013) The first human settlers on the Yucatán Peninsula: evidence from drowned caves in the state of Quintana Roo (South Mexico). In: Graf K, Ketron C, Waters M (eds) Paleomarican odyssey. Center for the Study of the First Americans, Orono, pp. 323–337Google Scholar
  29. Gutiérrez MA, Kaufmann C (2007) Criteria for the identification of formation processes in guanaco (Lama guanicoe) bone assemblages in fluvial-lacustrine environments. J Taphonomy 5(4):151–176Google Scholar
  30. Hanson C (1980) Fluvial taphonomic processes: models and experiments. In: Behrensmeyer AK, Hill AP (eds) Fossils in the making. University of Chicago Press, Chicago, pp. 156–181Google Scholar
  31. Henry D (2012) The palimpsest problem, hearth pattern analysis, and Middle Paleolithic site structure. Quat Int 247(9):246–266CrossRefGoogle Scholar
  32. Hill R (2006) Comparative anatomy and histology of xenarhran osteoderms. J Morphol 267:1441–1460CrossRefGoogle Scholar
  33. Hoffmann A, Decher J, Rovero F, Schaer J, Voigt C, Wibbelt G (2010) Field methods and techniques for monitoring mammals. In: Eymann J, Degreef J, Häuser C, Monje JC, Samyn Y, Vanden Spiegel D (eds.) Manual on field recording techniques and protocols for all taxa biodiversity inventories and monitoring. Abc Taxa 8(2):482-529.Google Scholar
  34. Hogg A, Hua Q, Blackwell P, Niu M, Buck C, Guilderson T, Heaton T, Palmer J, Reimer P, Reimer R, Turney C, Zimmerman S (2013) SHCal13 southern hemisphere calibration, 0-50,000 years cal BP. Radiocarbon 55(4):1889–1903.Google Scholar
  35. Hoyle BG, Fisher DC, Borns HW, Churchill-Dickson LL, Dorion CC, Weddle T (2004) Late Pleistocene mammoth remains from coastal Maine, U.S.A. Quat Res 61:277–288CrossRefGoogle Scholar
  36. Kaufmann C, Gutiérrez M (2004) Dispersión potencial de huesos de guanaco en medios fluviales y lacustres. In: Martínez G, Gutiérrez M, Curtoni R, Berón M, Madrid P (eds) Aproximaciones contemporáneas a la arqueología pampeana, perspectivas teóricas, metodológicas, analíticas y casos de estudio. Facultad de Ciencias Sociales (UNCPBA), Olavaria, pp. 129–146Google Scholar
  37. Kidwell SM (1985) Palaeobiological and sedimentological implications of fossil concentrations. Nature 318:457–459CrossRefGoogle Scholar
  38. Kidwell SM (1998) Time-averaging in the marine fossil record: overview of strategies and uncertainties. Geobios 39:977–995Google Scholar
  39. Lambeck K, Esat TM, Potter EK (2002) Links between climate and sea levels for the past three million years. Nature 419:199–206CrossRefGoogle Scholar
  40. Leonard-Pingel JS (2005) Molluscan taphonomy as a proxy for recognizing fossil seagrass beds. Louisiana State University, Master’s thesis.Google Scholar
  41. Lyman RL (1994) Vertebrate taphonomy. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  42. Lyman RL (2010) What taphonomy is, what it isn’t, and why taphonomists should care about the difference. J Taphonomy 8(1):1–16Google Scholar
  43. López P (2007) Tafonomía de los mamíferos extintos del pleistoceno tardío de la costa meridional del semiárido de Chile (IV Región-32° Latitude S). Alcances culturales y paleoecológicos. Chungara 39(1):69–86Google Scholar
  44. López P, Cartajena I, Olivares G, López O, Carabias D, Morales C (2012) Aplicación de Microscopio Electrónico de Barrido (MEB) y Espectroscopia de Energía Dispersiva (EDS) para distinguir alteraciones térmicas en restos osteofaunísticos de un sitio sumergido del Pleistoceno final de la costa de Chile central. In: Acosta A, Loponte D, Mucciolo L (eds) Temas de Arqueología, Estudios Tafonómicos y Zooarqueológicos (II). Instituto Nacional de Antropología y Pensamiento Latinoamericano, pp 25–44.Google Scholar
  45. Madgwick R (2014) What makes bones shiny? Investigating trampling as a cause of bone abrasion. Archaeol Anthropol Sci 6:163–173CrossRefGoogle Scholar
  46. Marean CW, Spencer LM (1991) Impact of carnivore ravaging on zooarchaeological measures of element abundance. Am Antiqu 56:645–658CrossRefGoogle Scholar
  47. Martin F (2013) Tafonomía y paleoecología de la transición Pleistoceno-Holoceno en Fuego-Patagonia. Ediciones de la Universidad de Magallanes, Punta ArenasGoogle Scholar
  48. Meldahl K, Flessa K (1990) Taphonomic pathways and comparative biofacies and taphofacies in a recent intertidal/shallow shelf environment. Lethaia 23:43–60CrossRefGoogle Scholar
  49. Méndez C (2011) Tecnología lítica en poblamiento Pleistoceno terminal del centro de Chile. Organización, gestos y saberes. Universidad Católica del Norte, PhD Thesis.Google Scholar
  50. Meintanis S, Iliopoulos G (2003) Tests of fit for the Rayleigh distribution based on the empirical Laplace transformation. Ann Inst Statist Math 55(1):137–151Google Scholar
  51. Núñez L, Varela J, Casamiquela R, Villagrán C (1994) Reconstrucción Multidisciplinaria de la ocupación prehistórica de Quereo, Centro de Chile. Lat Am Antiq 5(2):99–118CrossRefGoogle Scholar
  52. Osorio C (2002) Moluscos marinos en Chile. Especies de importancia económica. Editorial Salesianos, SantiagoGoogle Scholar
  53. Paskoff R (1970) Le Chili semi-aride, recherches géo-morphologiques. Biscaye Fréres, BordeauxGoogle Scholar
  54. Petraglia M, Potts R (1994) Water flow and the formation of early Pleistocene artifact sites in Olduvai Gorge, Tanzania. J Anthropol Archaeol 13:228–254CrossRefGoogle Scholar
  55. Polo García ME, Felicísimo AM (2008) Propuesta de metodología para el análisis del error de posición en bases de datos espaciales mediante estadística circular y mapas de densidad. GeoFocus 8:281–296Google Scholar
  56. Saillard M (2008) Dynamique du soulèvement côtier Pléistocène des Andes centrales: étude de l’évolution géomorphologique et datations (10Be) de séquences de terrasses marines (Sud Pérou-Nord Chili). Université de Toulouse, Ph.D thesis.Google Scholar
  57. Saillard M, Hall SR, Audin L, Farber DL, Hérail G, Martinod J, Regard V, Finkel RC, Bondoux F (2009) Non-steady long-term uplift rates and Pleistocene marine terrace development along the Andean margin of Chile (31° S) inferred from 10Be dating. Earth Planet Sci Lett 277(1–2): doi: 10.1016/j.epsl.2008.09.039.
  58. Saillard M, Riotte J, Regard V, Violette A, Hérail G, Audin L, Riquelme R (2012) Beach ridges U-Th dating in Tongoy Bay and tectonic implications for a peninsulabay system, Chile. J S Am Earth Sci 40:77–84CrossRefGoogle Scholar
  59. Spada G, Stocchi P (2007) SELEN: a Fortran 90 program for solving the «sea-level equation». Comput Geosci 33(4):538–562CrossRefGoogle Scholar
  60. Stewart D (1999) Formation processes affecting submerged archaeological sites: an overview. Geoarchaeology 14(6):565–587CrossRefGoogle Scholar
  61. Stright M (1995) Archaic period sites on the continental shelf of North America: the effect of relative sea-level changes on archaeological site locations and preservation. In: Bettis A (ed) Archaeological geology of the Archaic period in North America. Geological Society of America Special Paper 297, Colorado, pp. 131–147CrossRefGoogle Scholar
  62. Tappen M (1995) Savanna ecology and natural bone deposition. Curr Anthropol 36:223–260CrossRefGoogle Scholar
  63. Tappen M, Adler DS, Ferring CR, Gabunia M, Vekua A, Swisher CC (2002) Akhalkalaki the taphonomy of an Early Pleistocene locality in the Republic of Georgia. J Archaeol Sci 29:1367–1391CrossRefGoogle Scholar
  64. Villa-Martínez R, Villagrán C (1997) Historia de la vegetación de bosques pantanosos de la costa de Chile central durante el Holoceno medio y tardío. Rev Chil Hist Nat 70:391–401Google Scholar
  65. Voorhies M (1969) Taphonomy and population dynamics of an Early Pliocene vertebrate fauna, Knox County, Nebraska. University of Wyoming Contribution to Geology Special Paper 1:1–69.Google Scholar
  66. Waguespack NM (2002) Caribou sharing and storage: refitting the Palangana site. J Anthropol Archaeol 21:396–417CrossRefGoogle Scholar
  67. Zar J (1984) Biostatistical analysis, Second edn. Prentice-Hall Inc., New JerseyGoogle Scholar
  68. Zazzo A, Saliège JF (2011) Radiocarbon dating of biological apatites: a review. Palaeogeogr Palaeoclimatol Palaeoecol 310:52–61CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Patricio López
    • 1
  • Isabel Cartajena
    • 1
  • Diego Carabias
    • 2
  • Carla Morales
    • 2
  • David Letelier
    • 3
  • Valentina Flores
    • 4
  1. 1.Departamento de Antropología, Universidad de Chile and ARQMAR-Centre for Maritime Archaeology Research of the Southeastern PacificSantiagoChile
  2. 2.ÀRKA-Maritime Archaeology and ARQMAR-Centre for Maritime Archaeology Research of the Southeastern PacificValparaísoChile
  3. 3.ÀRKA-Maritime ArchaeologyValparaísoChile
  4. 4.Departamento de Geología, Escuela de Ingeniería Civil, Universidad Santo Tomás; Departamento de Geología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile and ARQMAR-Centre for Maritime Archaeology Research of the Southeastern PacificSantiagoChile

Personalised recommendations