The role of small carnivores in the movement of bones: implications for the Pampas archaeofaunal record, Argentina

  • M. A. Gutiérrez
  • C. A. Kaufmann
  • M. E. González
  • N. A. Scheifler
  • D. J. Rafuse
  • A. Massigoge
  • M. C. Álvarez
Original Paper


The use of the same spaces and prey by humans and carnivores often leads to the formation of complex faunal assemblages, in which the anatomical and taxonomic composition results from the combined action of these agents. The aim of this paper is to evaluate bone movement based on actualistic research in the Pampas region of Argentina, with an emphasis on the action of carnivores as agents responsible for transport and accumulation of bone. Number of taxa, percentage of specimens affected by carnivores in each environmental context, skeletal representation and carnivore modifications on European hare from the hills and the coast, and bone movement are discussed. The implications of our actualistic results for the regional archaeological record are also addressed. All of the sampled environments presented evidence of carnivore modifications, with percentages between 9 % (coast) and 40 % (hills). This information demonstrates that this agent plays an active role in the formation of modern bone assemblages in the Pampas region and provides a frame of reference for exploring interpretations about the low percentages of carnivore activity recorded in the archaeological record of the region. We argue that carnivores not only modify an assemblage by incorporating or destroying bones, but also by moving them to other locations. Consequently, carnivore effects on site formation in the Pampas region should not be underestimated when their marks are scarce.


Pampas region Actualistic research Small carnivores Bone movement 



Financial support for this research was granted by the Agencia de Promoción Científica y Tecnológica, Argentina (PICT 2013-0119 and PICT 2008-0814) and Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina (PIP 112-200801-00291). INCUAPA-CONICET provided institutional support. We are grateful to Dr. Pablo Messineo, Dra. Verónica Aldazabal, and Dr. Mariano Bonomo for allowing us to conduct our taphonomic observations in their archaeological study areas; to Dra. Luciana Stoessel for her contribution to taxonomic fish determination; and to Juan Manuel Rodríguez for his assistance during fieldwork.

Supplementary material

12520_2015_272_MOESM1_ESM.docx (15 kb)
Online Resource 1 (DOCX 14 kb)
12520_2015_272_MOESM2_ESM.docx (22 kb)
Online Resource 2 (DOCX 21 kb)
12520_2015_272_MOESM3_ESM.docx (14 kb)
Online Resource 3 (DOCX 13.7 kb)
12520_2015_272_Fig7_ESM.gif (153 kb)
Online Resource 4

Bones with evidence of both anthropic and carnivore marks. Upper images: sheep bones, (A) atlas (B) humerus (C) tibia; Lower images: chicken bones, (D) tibial tarsal (E) femur, (F) fibula, (G) pelvis (GIF 152 kb)

12520_2015_272_MOESM4_ESM.tif (8.7 mb)
High resolution image (TIFF 8916 kb)
12520_2015_272_MOESM5_ESM.docx (16 kb)
Online Resource 5 (DOCX 16.3 kb)


  1. Alcaraz AP (2015) Primeros resultados de los análisis de fauna menor del sitio arqueológico Zoko Andi 1 (Transición pampeano-patagónica oriental, provincial de Buenos Aires, Argentina). Archaeofauna Int J Archaeozoology 24:119–133Google Scholar
  2. Álvarez MC (2012) Análisis zooarqueológicos en el sudeste de la Región Pampeana. Patrones de subsistencia durante el Holoceno tardío. Dissertation, Universidad Nacional del Centro de la Provincia de Buenos AiresGoogle Scholar
  3. Álvarez MC, Kaufmann CA, Massigoge A, Gutiérrez MA, Rafuse DJ, Scheifler N, González M (2012) Bone modification and destruction patterns of leporid carcasses by the Geoffroy`s cat (Leopardus geoffroyi): an experimental study. Quat Int 278:71–80. doi: 10.1016/j.quaint.2011.11.029 CrossRefGoogle Scholar
  4. Álvarez MC, Alcaraz AP, Gutiérrez MA, Martínez GA (2013) Análisis zooarqueológico del sitio Paso Otero 4 (partido de Necochea). Aportes a la discusión de los modelos de subsistencia de la región pampeana. Intersecciones en Antropología 14:383–398Google Scholar
  5. Andrews P (1990) Owls, caves and fossils. University of Chicago Press, London. doi: 10.5334/64 Google Scholar
  6. Ballari SA, Barrios García MN (2014) A review of wild boar Sus scrofa diet and factors affecting food selection in native and introduced ranges. Mammal Rev 44:124–134. doi: 10.1111/mam.12015 CrossRefGoogle Scholar
  7. Bayón C, Pupio A, Frontini R, Vecchi R, Scabuzzo C (2010) Localidad Arqueológica Paso Mayor: nuevos estudios 40 años después. Intersecciones en Antropología 11:155–166Google Scholar
  8. Behrensmeyer AK (1975) The taphonomy and paleoecology of Plio-Pleistocene vertebrate assemblages east of Lake Rudolf, Kenya. Bull Mus Comp Zool 146:473–578Google Scholar
  9. Behrensmeyer AK (1978) Taphonomic and ecological information from bone weathering. Paleobiology 4(2):150–162Google Scholar
  10. Behrensmeyer AK (1983) Patterns of natural bone distribution on recent land surfaces: implications for archaeological site formation. In: Clutton-Brock J, Grigson C (eds) Animals and archaeology: hunters and their prey. Brit Archaeol Rep In, Series 163, Oxford, p 93-106Google Scholar
  11. Behrensmeyer AK, Boaz DE (1980) The recent bones of Amboseli Park, Kenya in relation to East African paleoecology. In: Behrensmeyer AK, Hill A (eds) Fossils in the making. University of Chicago Press, Chicago, pp 72–93Google Scholar
  12. Behrensmeyer AK, Tristan Stayton C, Chapman RE (2003) Taphonomy and ecology of modern avifaunal remains from Amboseli Park, Kenya. Paleobiology 29(1):52–70. doi: 10.1666/0094-8373(2003)029<0052:taeoma>;2 CrossRefGoogle Scholar
  13. Benito-Calvo A, Martínez-Moreno J, Mora R, Roy M, Roda X (2011) Trampling experiments at Cova Gran de Santa Linya, Pre-Pyrenees, Spain: their relevance for archaeological fabrics of the Upper-Middle Paleolithic assemblages. J Archaeol Sci 38:3652–3661. doi: 10.1016/j.jas.2011.08.036 CrossRefGoogle Scholar
  14. Berman W, Tonni EP (1987) Canis (Dusicyon) avus Burmeister (1864) (Carnivora, Canidae) en el Pleistoceno tardío y Holoceno de la provincia de Buenos Aires. Aspectos sistemáticos y Bioestratigráficos relacionados. Ameghiniana 24:245–250Google Scholar
  15. Binford L (1978) Nunamiut ethnoarchaeology. Academic Press, Nueva YorkGoogle Scholar
  16. Binford L (1981) Bones: ancient men and modern myths. Academic Press, New YorkGoogle Scholar
  17. Blumenschine RJ (1986) Carcass consumption sequences and the archaeological distinction of scavenging and hunting. J Hum Evol 15:639–659. doi: 10.1016/s0047-2484(86)80002-1 CrossRefGoogle Scholar
  18. Blumenschine RJ, Marean CW (1993) A carnivore’s view of archaeological bone assemblage. In: Hudson J (ed) From bones to behavior. Center for Archaeological Investigation, Southern Illinois University, Carbondale, pp 273–300Google Scholar
  19. Bocek B (1986) Rodent ecology and burrowing behavior: predicted effects on archaeological site formation. Am Antiq 51(3):589–603. doi: 10.2307/281754 CrossRefGoogle Scholar
  20. Bonino N, Cossios D, Menegheti J (2008) Dispersión de la liebre europea (Lepus europaeus) en Sudamérica. Comunicaciones Técnicas 152. Instituto Nacional de Tecnología Agropecuaria, BarilocheGoogle Scholar
  21. Bonomo M, León CD (2010) Un contexto arqueológico en posición estratigráfica en los médanos litorales. El sitio Alfar (Pdo. de General Pueyrredón, Pcia. De Buenos Aires). In: Berón M, Luna L, Bonomo M, Montalvo C, Aranda C, Carrera Aizpitarte M (eds) Mamul Mapü: Pasado y Presente desde la Arqueología Pampeana, Tomo 2. Libros del Espinillo, Ayacucho, pp 29–45Google Scholar
  22. Borrero LA (1990) Taphonomy of guanaco bones in Tierra del Fuego. Quat Res 34:361–371. doi: 10.1016/0033-5894(90)90047-o CrossRefGoogle Scholar
  23. Cabrera AL, Willink AW (1980) Biogeografía de América Latina. Serie de Biología. Monografía Nro. 13. Secretaría General de la Organización de los Estados Americanos. Programa Regional de Desarrollo Científico y Tecnológico, Washington D.CGoogle Scholar
  24. Camarós E, Cueto M, Teira LC, Tapia J, Cubas M, Blasco R, Rosell J, Rivals F (2013) Large carnivores as taphonomic agents of space modification: an experimental approach with archaeological implications. J Archaeol Sci 40:1361–1368. doi: 10.1016/j.jas.2012.09.037 CrossRefGoogle Scholar
  25. Castillo DF, Birochio DE, Lucherini M, Casanave EB (2011) Diet of adults and cubs of Lycalopex gymnocercus in Pampas grassland: a variation of the optimal foraging theory? Ann Zool Fenn 48:251–256. doi: 10.5735/086.048.0406 CrossRefGoogle Scholar
  26. Cruz I (2008) Tafonomía en escalas espaciales amplias: el registro óseo de las aves en el sur de Patagonia. In: Acosta A, Loponte D, Mucciolo L (eds) Temas de Arqueología: Estudios Tafonómicos y Zooarqueológicos 1. INAPL and AINA, Buenos Aires, pp 15–35Google Scholar
  27. Darrieu CA, Camperi AR (2001) Nueva lista de las aves de la provincia de Buenos Aires. Cobiobo N°3- Probiota N°2. Sección de Política Ambiental. UNLP. Buenos AiresGoogle Scholar
  28. de Magalhaes JP, Costa J (2009) A database of vertebrate longevity records and their relation to other life-history traits. J Evol Biol 22(8):1770–1774. doi: 10.1111/j.1420-9101.2009.01783.x CrossRefGoogle Scholar
  29. Delaney-Rivera C, Plummer TW, Hodgson JA, Forrest F, Hertel F, Oliver JS (2009) Pits and pitfalls: taxonomic variability and patterning in tooth mark dimensions. J Archaeol Sci 36:2597–2608. doi: 10.1016/j.jas.2009.08.001 CrossRefGoogle Scholar
  30. Dunning BJ (2008) Body masses of birds of the world. In: Dunning JB (ed) Handbook of avian body masses, vol 1, 2nd edn. CRC Press Tylor & Francis Group Raton London New York, New York, pp 1–574Google Scholar
  31. Erlandson JM (1984) A case study in faunal turbation: delineating the effects of the burrowing pocket gopher on the distribution of archaeological materials. Am Antiq 49:758–790. doi: 10.2307/279743 CrossRefGoogle Scholar
  32. Fernández PM, Cruz I, Forlano A (2010) Sitio 37: una madriguera de carnívoro en el norte de la Patagonia Andina (Cholila, Provincia de Chubut, Argentina). In: Gutiérrez MA, De Nigris M, Fernández PM, Giardina MA, Gil AF, Izeta A, Neme G, Yacobaccio HD (eds) Zooarqueología a principios del siglo XXI: aportes teóricos, metodológicos y casos de estudio. Libros del Espinillo, Buenos Aires, pp 409–417Google Scholar
  33. Frontini R (2012) El aprovechamiento de animales en valles fluviales y lagunas del sur bonaerense durante el Holoceno. Dissertation, Universidad de Buenos AiresGoogle Scholar
  34. Gómez Villafañe IE, Miño M, Cavia R, Hodara K, Courtalón P, Suárez O, Busch M (2005) Roedores. Guía de la Provincia de Buenos Aires. Editorial L.O.L.A (Literature of Latin America), Buenos AiresGoogle Scholar
  35. González ME (2007) Estudios de interés tafonómico en los restos óseos humanos de laguna Tres Reyes 1 (Partido de Adolfo Gonzales Chaves, provincia de Buenos Aires). Intersecciones en Antropología 8:215–233Google Scholar
  36. Grayson DK (1984) Quantitative zooarchaeology. Academic Press, New YorkGoogle Scholar
  37. Gutiérrez M (2006) Efectos, agentes y procesos tafonómicos en el área Interserrana Bonaerense. Relaciones de la Sociedad Argentina de Antropología XXXI:201–228Google Scholar
  38. Gutiérrez M (2009) Tafonomía: ¿tiranía o multivocalidad? In: Barberena R, Borrazzo K, Borrero LA (eds) Perspectivas Actuales en Arqueología Argentina. Editorial Dunken, Buenos Aires, pp 55–88Google Scholar
  39. Gutiérrez MA, Kaufmann CA (2007) Methodological criteria for the identification of formation processes in guanaco (Lama guanicoe) bone assemblages in fluvial-lacustrine environments. J Taphonomy 5(4):151–175Google Scholar
  40. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol Electron 4(1):1–9Google Scholar
  41. Hanson CB (1980) Fluvial taphonomic processes: models and experiments. In: Behrensmeyer AK, Hill AP (eds) Fossils in the making. University of Chicago Press, Chicago, pp 156–181Google Scholar
  42. Haynes G (1980) Prey bones and predators: potential ecologic information from analysis of bone sites. Ossa 7:75–97Google Scholar
  43. Haynes G (1982) Utilization and skeletal disturbances of North American prey carcasses. Arctic 35:266–281. doi: 10.14430/arctic2325 CrossRefGoogle Scholar
  44. Iriondo M (1999) Last glacial maximum and hypsithermal in the Southern Hemisphere. Quat Int 62:11–19. doi: 10.1016/s1040-6182(99)00019-1 CrossRefGoogle Scholar
  45. Iriondo MH, García NO (1993) Climatic variations in the Argentina plains during the last 18,000 years. Palaeogeogr Palaeoclimatol 101:209–220. doi: 10.1016/0031-0182(93)90013-9 CrossRefGoogle Scholar
  46. Jackson JE, Branch LC, Villarreal D (1996) Lagostomus maximus. Mamm Species. Am Soc Mammalogist 543:1–6. doi: 10.2307/3504168 Google Scholar
  47. Kaufmann CA (2009) Estructura de edad y sexo en guanaco. Estudios actualísticos y arqueológicos en Pampa y Patagonia. Sociedad Argentina de Antropología, Buenos AiresGoogle Scholar
  48. Kaufmann CA, Messineo PG (2002) Los desplazamientos óseos en carcasas de guanaco afectadas por la acción de zorros: un caso actual y sus implicaciones arqueológicas. In: Mazzanti DL, Berón MA, Oliva FW (eds) Del Mar a los Salitrales. Diez Mil Años de Historia Pampeana en el Umbral del Tercer Milenio. Facultad de Humanidades, Universidad Nacional de Mar del Plata, Mar del Plata, pp 419–429Google Scholar
  49. Kaufmann CA, Gutiérrez MA, Álvarez MC, González ME, Massigoge A (2011) Fluvial dispersal potential of guanaco bones (Lama guanicoe) under controlled experimental conditions: the influence of age classes to the hydrodinamic behavior. J Archaeol Sci 38(2):334–344. doi: 10.1016/j.jas.2010.09.010 CrossRefGoogle Scholar
  50. Klein RG, Cruz-Uribe K (1984) The analysis of animal bones from archaeological sites. University of Chicago Press, ChicagoGoogle Scholar
  51. Lloveras L, Moreno García M, Nadal J (2008) Taphonomic study of leporid remains accumulated by the Spanish imperial eagle (Aquila adalberti). Geobios –Lyon 41:91–100. doi: 10.1016/j.geobios.2006.11.009 CrossRefGoogle Scholar
  52. Lloveras L, Moreno-García M, Nadal J (2011) Feeding the Foxes: an experimental study to assess their taphonomic signature on Leporid remains. Int J Osteoarchaeol 22(5):577–590. doi: 10.1002/oa.1280 CrossRefGoogle Scholar
  53. Lord RD (2009) Capybaras: a natural history of the world’s largest rodent. Johns Hopkins University Press, BaltimoreGoogle Scholar
  54. Lucherini M, Vidal EML (2008) Lycalopex gymnocercus (Carnivora: Canidae). Mamm Species. Am Soc Mammalogist 810:1–9. doi: 10.1644/820.1 Google Scholar
  55. Lyman RL (1994) Vertebrate taphonomy. Cambridge Manuals in Archaeology. Cambridge University Press, Cambridge. doi: 10.1017/cbo9781139878302 CrossRefGoogle Scholar
  56. Mancini MV, Paez MM, Prieto AR, Syutz S, Tonello M, Vilanova I (2005) Mid-Holocene climatic variability reconstruction from pollen records (32°-52°S, Argentina). Quat Int 132:47–59. doi: 10.1016/j.quaint.2004.07.013 CrossRefGoogle Scholar
  57. Manfredi C, Lucherini M, Canepuccia A, Casanave E (2004) Geographical variations in the diet composition of the Geoffroy’s cat (Oncifelis geoffroyi) in the pampas. J Mammal 85:1111–1115. doi: 10.1644/bwg-133.1 CrossRefGoogle Scholar
  58. Marcomini SC, López RA (2013) Erosion and management in coastal dunes. In: Finkl CW (ed) Coastal hazards. Springer, New York, pp 511–553. doi: 10.1007/978-94-007-5234-4_19 CrossRefGoogle Scholar
  59. Marean CW (1995) Of taphonomy and zooarchaeology. Evol Anthropol 4(2):64–72CrossRefGoogle Scholar
  60. Marean CW, Bertino L (1994) Intrasite spatial analysis of bone: subtracting the effect of secondary carnivore consumers. Am Antiq 59(4):748–768. doi: 10.2307/282346 CrossRefGoogle Scholar
  61. Martin FM (1998) Madrigueras, dormideros y letrinas: Aproximación a la tafonomía de zorros. In: Borrero LA (ed) Arqueología de la Patagonia meridional [Proyecto “Magallania”]. Ediciones Búsqueda de Ayllu, Concepción del Uruguay, pp 73–96Google Scholar
  62. Martin FM, Borrero LA (1997) A puma lair in southern Patagonia: implications for the archaeological record. Curr Anthropol 38(3):453–461. doi: 10.1086/204634 CrossRefGoogle Scholar
  63. Massigoge A (2007) Procesos de formación del registro arqueológico en el sitio Cortaderas (partido de San Cayetano, provincia de Buenos Aires). Intersecciones en Antropología 8:197–214Google Scholar
  64. Massigoge A (2011) Nuevas evidencias arqueológicas del Holoceno tardío en el área Interserrana: el sitio Las Brusquillas 2 (Partido de San Cayetano, Provincia de Buenos Aires, Argentina). Cazadores-recolectores del Cono Sur Revista de Arqueología 5:179–195Google Scholar
  65. Massigoge A, Gutiérrez MA, Alvarez MC, Kaufmann CA, Rafuse DJ, González ME (2014) Estudio comparativo de las marcas de dientes producidas por dos pequeños carnívoros sudamericanos. Revista Chilena de Antropología 30:42–49. doi: 10.4067/s0718-22442014000100010 Google Scholar
  66. Massigoge A, Rafuse DJ, Álvarez MC, González ME, Gutiérrez MA, Kaufmann CA, Scheifler NA (2015) Beached penguins on the Atlantic Coast in the Pampas region of Argentina: Taphonomic analysis and implications for the archaeological record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 436:85–95. doi: 10.1016/j.palaeo.2015.06.045
  67. Massoia E, Forasiepi A, Teta P (2000) Los marsupiales de la Argentina. Editorial L.O.L.A (Literature of Latin America), Buenos AiresGoogle Scholar
  68. Mazzanti D, Quintana C (2001) Cueva Tixi: Cazadores y Recolectores de las Sierras de Tandilia Oriental. Geología, Paleontología y Zooarqueología. Laboratorio de Arqueología, Universidad Nacional de Mar del Plata, Publicación Especial 1, Mar del PlataGoogle Scholar
  69. Mello Araujo AG, Marcelino JC (2003) The role of armadillos in the movement of archaeological materials: an experimental approach. Geoarchaeology 18(4):433–460. doi: 10.1002/gea.10070 CrossRefGoogle Scholar
  70. Messineo PG, Álvarez MC, Favier Dubois C, Steffan PG, Colantonio MJ (2013) Estado de avance de las investigaciones arqueológicas en el sitio Empalme Querandíes 1 (centro de la subregión pampa húmeda, provincia de Buenos Aires). Comechingonia 17(1):123–148Google Scholar
  71. Messineo PG, Kaufmann CA, Steffan P, Favier Dubois C, Pal N (2014) Ocupaciones humanas en un valle intraserrano del sector noroccidental de Tandilia: sitio El Puente (partido de Olavarría, Buenos Aires). Relaciones de la Sociedad Argentina de Antropología XXXIX:435–462Google Scholar
  72. Mondini NM (1995) Artiodactyl prey transport by foxes in puna rock shelters. Curr Anthropol 36(3):520–524. doi: 10.1086/204391 CrossRefGoogle Scholar
  73. Mondini M (2004) La comunidad de predadores en la Puna durante el Holoceno. Interacciones bióticas entre humanos y carnívoros. Relaciones de la Sociedad Argentina de Antropología XXIX:183–209Google Scholar
  74. Nielsen A (1991) Trampling the archaeological record: an experimental study. Am Antiq 56(3):483–503. doi: 10.2307/280897 CrossRefGoogle Scholar
  75. Olsen S, Shipman P (1988) Superficial modification on bone: trampling vs butchering. J Archaeol Sci 15:535–553. doi: 10.1016/0305-4403(88)90081-7 CrossRefGoogle Scholar
  76. Pavao B, Stahl PV (1999) Structural density assays of Leporid skeletal elements with implications for taphonomic, actualistic and archaeological research. J Archaeol Sci 26:53–66. doi: 10.1006/jasc.1998.0299 CrossRefGoogle Scholar
  77. Politis GG (2008) The Pampas and Campos of South America. In: Silverman H, Isbell W (eds) Handbook of South American Archaeology. Springer, New York, pp 235–260. doi: 10.1007/978-0-387-74907-5_14 CrossRefGoogle Scholar
  78. Prado JL, Alberdi MT (1999) The mammalian record and climatic change over the last 30,000 years in the Pampean Region, Argentina. Quat Int 57/58:165–174. doi: 10.1016/s1040-6182(98)00057-3 CrossRefGoogle Scholar
  79. Prates L, Prevosti FJ, Berón M (2010) First records of prehispanic dogs in southern South America (Pampa-Patagonia, Argentina). Curr Anthropol 51(2):273–280. doi: 10.1086/650166 CrossRefGoogle Scholar
  80. Prevosti FJ, Vizcaino SF (2006) Paleoecology of the large carnivore guild from the late Pleistocene of Argentina. Acta Palaeontol Pol 51(3):407–422Google Scholar
  81. Prevosti FJ, Santiago F, Prates L, Salemme M (2011) Constraining the time of extinction of the South American fox Dusicyon avus (Carnivora, Canidae) during the late Holocene. Quat Int 245:209–217. doi: 10.1016/j.quaint.2011.02.010 CrossRefGoogle Scholar
  82. Prieto AR, Blasi AM, De Francesco CG, Fernández C (2004) Environmental history since 11,000 yr B.P. of the northeastern Pampas, Argentina from alluvial sequences of Luján River. Quat Res 62:146–161. doi: 10.1016/j.yqres.2004.04.006 CrossRefGoogle Scholar
  83. Quattrocchio ME, Grill SC, Zavala CA (1998) Chronostratigraphic and palynozone chronosequences charts of Naposta’ Grande Creek, southwestern Buenos Aires Province, Argentina. Q S Am Antarct 11:111–133Google Scholar
  84. Quattrocchio ME, Borromei AM, Deschamps CM, Grill SC, Zavala CA (2008) Landscape evolution and climate changes in the Late Pleistocene-Holocene, southern Pampa (Argentina): Evidence from palynology, mammals and sedimentology. Quat Int 181:123–138. doi: 10.1016/j.quaint.2007.02.018 CrossRefGoogle Scholar
  85. Quintana CA (2004) Acumulaciones de restos óseos en reparos rocosos de las sierras de Tandilia oriental, Argentina. Estud Geol 60:37–47. doi: 10.3989/egeol.04601-271 Google Scholar
  86. Rafuse DJ (2013) Integridad del registro arqueofaunístico del sitio Arroyo Seco 2 (Región Pampeana, Argentina) desde una perspectiva tafonómica. Dissertation, Universidad Nacional del Centro de la Provincia de Buenos AiresGoogle Scholar
  87. Rafuse DJ, González ME, Kaufmann CA, Álvarez MC, Gutiérrez MA, Massigoge A (2014) Análisis comparativo de los patrones de modificaciones óseas de dos carnívoros sudamericanos: el gato montés (Leopardus geoffroyi) y el zorro pampeano (Lycalopex gymnocercus). Aportes para la identificación de la acción de pequeños carnívoros en el registro arqueológico. Magallania 42(1):167–186. doi: 10.4067/s0718-22442014000100010 CrossRefGoogle Scholar
  88. Redford KH, Eisenberg JF (1992) Mammals of the neotropics. The Southern Cone. University of Chicago Press, Chicago and LondonGoogle Scholar
  89. Rodríguez-Hidalgo A, Lloveras L, Moreno-García M, Saladié P, Canals A, Nadal J (2013) Feeding behaviour and taphonomic characterization of non-ingested rabbit remains produced by the Iberian lynx (Lynx pardinus). J Archaeol Sci 40(7):3031–3045. doi: 10.1016/j.jas.2013.03.006 CrossRefGoogle Scholar
  90. Scheifler NA, Messineo PG (2014) Zooarchaeological study in the laguna Cabeza de Buey 2 site (center of the pampas grassland, Buenos Aires, Argentina). Libro de Resúmenes del XII International Conference of Archaezoology, Museo de Historia Natural de San Rafael, San Rafael, Mendoza, Argentina, p 142Google Scholar
  91. Shipman P (1981) Life history of a fossil. Harvard University Press, CambridgeGoogle Scholar
  92. Stiner M (2004) Comparative ecology and taphonomy of spotted hyenas, humans, and wolves in Pleistocene Italy. Rev Paléobiol 23(2):771–785Google Scholar
  93. Stoessel L (2012) Analisis zooarqueológicos en el curso inferior del río Colorado (provincia de Buenos Aires). Aportes para el conocimiento de la subsistencia de cazadores-recolectores en el Holoceno tardío. Dissertation, Universidad Nacional del Centro de la Provincia de Buenos Aires, OlavarríaGoogle Scholar
  94. Stutz S, Borel CM, Fontana SL, del Puerto L, Inda H, García Rodríguez F, Tonello MS (2010) Late Holocene climate and environments of the SE Pampa grasslands, Argentina, inferred from biological indicators in shallow, freshwater Lake Nahuel Rucá. J Paleolimnol 44:761–775. doi: 10.1007/s10933-010-9450-4 CrossRefGoogle Scholar
  95. Superina M (2000) Biologie und Haltung von Günteltieren (Dasypodidae). Dissertation, Universität ZürichGoogle Scholar
  96. Tonni EP, Politis GG (1981) La distribución del guanaco (Mammalia, Camelidae) en la Provincia de Buenos Aires durante el Pleistoceno tardío y Holoceno. Los factores climáticos como causas de su retracción. Ameghiniana 17:53–66Google Scholar
  97. Tonni EP, Cione AL, Figini AJ (1999) Predominance of arid climates indicated by mammals in the pampas of Argentina during the Late Pleistocene and Holocene. Palaeogeogr Palaeoclimatol 147:257–281. doi: 10.1016/s0031-0182(98)00140-0 CrossRefGoogle Scholar
  98. Voorhies M (1969) Taphonomy and population dynamics of an early pliocene vertebrate fauna, Knox County, Nebraska. University of Wyoming Contributions to Geology Special Paper N°1, Laramie. 10.2113/gsrocky.8.special_paper_1.1
  99. Woods CA, Contreras L, Willner-Chapman G, Whidden HP (1992) Myocastor coypus. Mamm Species. Am Soc Mammalogist 398:1–8Google Scholar
  100. Yravedra J (2010) A taphonomic perspective on the origins of the faunal remains from Amalda. Cave (Spain). J Taphonomy 8(4):301–334. doi: 10.2307/3504182 Google Scholar
  101. Zárate MA, Blasi A (1993) Late Pleistocene-Holocene aeolian deposits of the southern Buenos Aires province, Argentina: A preliminary model. Quat Int 17:15–20. doi: 10.1016/1040-6182(93)90075-q CrossRefGoogle Scholar
  102. Zárate M, Folguera A (2009) On the formations of the Pampas in the footsteps of Darwin: South of the Salado. Rev Asoc Geol Argent 64(1):124–136Google Scholar
  103. Zárate MA, Kemp RA, Espinosa M, Ferrero L (2000) Pedosedimentary and palaeoenvironmental significance of a Holocene alluvial sequence in the southern Pampas, Argentina. The Holocene 10:481–488. doi: 10.1191/095968300669846317 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • M. A. Gutiérrez
    • 1
  • C. A. Kaufmann
    • 1
  • M. E. González
    • 1
  • N. A. Scheifler
    • 1
  • D. J. Rafuse
    • 1
  • A. Massigoge
    • 1
  • M. C. Álvarez
    • 1
  1. 1.CONICET-INCUAPA, Facultad de Ciencias SocialesUniversidad Nacional del Centro de la Provincia de Buenos AiresOlavarríaArgentina

Personalised recommendations