Skip to main content
Log in

Carbon and nitrogen isotope composition of natural pastures in the dry Puna of Argentina: a baseline for the study of prehistoric herd management strategies

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

This study represents an isotopic survey of modern plants developed to establish baseline isotopic values in order to explore prehistoric herd management strategies employed by the South American camelid herders that occupied the southern Andean highlands during the past 3000 years. We present carbon (δ13C) and nitrogen (δ15N) isotopic compositions of natural pastures collected from different plant communities along an altitudinal gradient in the dry Puna of Argentina. Our results show that C3 plants are the most abundant along the whole altitudinal gradient and that C3 and C4 plants exhibit a differential distribution, the latter being less abundant in those sites located above 3900 meters above sea level (masl). At the same time, plants growing at low-altitude sites with low water availability exhibit higher δ15N values than plants growing at high-altitude sites with higher water availability. These results explain the negative correlation found between altitude and South American camelid bone collagen δ13C and δ15N values published in previous studies. This work represents a fundamental step towards the building of an isotopic ecology for the dry Puna area with the ultimate goal to explore herd management strategies employed by human groups in the past. In this sense, modern plant and South American camelid tissue isotopic compositions would provide a frame of reference to interpret isotopic compositions measured on archaeofaunal remains recovered at pastoral sites, with the aim to explore mobility and pastureland use by prehistoric herders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ambrose SH (1991) Effects of diet, climate and physiology on nitrogen isotope abundances in terrestrial foodwebs. J Archaeol Sci 18:293–317

    Article  Google Scholar 

  • Ambrose SH (2000) Controlled diet and climate experiments on nitrogen isotope ratios in rats. In: Ambrose SH, Katzenberg MA (eds) Biochemical approaches to paleodietary analysis. Kluwer Academic/Plenum Publishers, New York, pp 243–259

    Google Scholar 

  • Ambrose SH, DeNiro MJ (1986) The isotopic ecology of East African mammals. Oecologia 69:395–406

    Article  Google Scholar 

  • Ambrose SH, Krigbaum J (2003) Bone chemistry and bioarchaeology. J Anthropol Archaeol 22(3):193–199

    Article  Google Scholar 

  • Amundson R, Austin AT, Schuur EAG, Yoo K, Matzek V, Kendall C, Uebersax A, Brenner D, Baisden WT (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Glob Biogeochem Cycles 17:1031

    Article  Google Scholar 

  • Austin AT, Vitousek PM (1998) Nutrient dynamics on a precipitation gradient in Hawaii. Oecologia 113:519–529

    Article  Google Scholar 

  • Badeck FW, Tcherkez G, Nogués S, Piel C, Ghashghaie J (2005) Post-photosynthetic fractionation of stable carbon isotopes between plant organs—a widespread phenomenon. Rapid Commun Mass Spectrom 19:1381–1391

    Article  Google Scholar 

  • Balasse M, Ambrose SH, Smith TD, Price D (2002) The seasonal mobility model for prehistoric herders in the south-western Cape of South Africa assessed by isotopic analysis of sheep tooth enamel. J Archaeol Sci 29:917–932

    Article  Google Scholar 

  • Bianchi AR, Yañez CE, Acuña LR (2005) Bases de datos mensuales de las precipitaciones del Noroeste Argentino. Informe del Proyecto Riesgo Agropecuario. INTA-SAGPYA

  • Bocherens H, Drucker D (2003) Trophic level isotopic enrichments for carbon and nitrogen in collagen: case studies from recent and ancient terrestrial ecosystems. Int J Osteoarchaeol 13:46–53

    Article  Google Scholar 

  • Bocherens H, Pacaud G, Petr A, Lazarev PA, Mariotti A (1996) Stable isotope abundances (13C, 15N) in collagen and soft tissues from Pleistocene mammals from Yakutia: implications for the palaeobiology of the mammoth steppe. Palaeogeogr Palaeoclimatol Palaeoecol 126:31–44

    Article  Google Scholar 

  • Braun Wilke RH, Picchetti LPE, Villafañe BS (1999) Pasturas montanas de Jujuy. UNJu

  • Britton K, Müldner G, Bell M (2008) Stable isotope evidence for salt-marsh grazing in the Bronze Age Severn Estuary, UK: implications for palaeodietary analysis at coastal sites. J Archaeol Sci 35:2111–2118

    Article  Google Scholar 

  • Burton RK, Snodgrass JJ, Gifford-Gonzalez D, Guilderson T, Brown T, Koch PL (2001) Holocene changes in the ecology of northern fur seals: insights from stable isotopes and archaeofauna. Oecologia 128:107–115

    Article  Google Scholar 

  • Cabrera AL (1976) Regiones fitogeográficas argentinas. Enciclopedia Argentina de Agricultura y jardinería, 2da Edición, tomo II. Buenos Aires. Editorial Acme

  • Cadwallader L, Beresford-Jones DG, Whaley OQ, O'Connell TC (2012) The signs of maize? A reconsideration of what δ13C values say about palaeodiet in the Andean region. Hum Ecol 40:487–509

    Article  Google Scholar 

  • Casey MM, Post DM (2011) The problem of isotopic baseline: reconstructing the diet and trophic position of fossil animals. Earth Sci Rev 106:131–148

    Article  Google Scholar 

  • Cavagnaro JB (1988) Distribution of C3 and C4 grasses at different altitudes in a temperate arid region of Argentina. Oecologia 76:273–277

    Article  Google Scholar 

  • Cerling TE (1992) Development of grasslands and savannas in East Africa during the Neogene. Palaeogeogr Palaeoclimatol Palaeoecol 97:241–247

    Article  Google Scholar 

  • Codron J, Codron D, Lee-Thorp JA, Sponheimer M, Bond WJ, De Ruiter D, Grant R (2005) Taxonomic, anatomical, and spatio-temporal variations in the stable carbon and nitrogen isotopic compositions of plants from an African savanna. J Archaeol Sci 32:1757–1772

    Article  Google Scholar 

  • Coplen TB, Krouse HR, Bohlke JK (1992) Reporting of nitrogen-isotope abundances. Pure Appl Chem 64:907–908

    Article  Google Scholar 

  • Coplen TB, Brand WA, Gehre M, Gröning M, Meijer HAJ, Toman B, Verkouteren RM (2006) New guidelines for δ13C measurements. Anal Chem 78:2439–2441

    Article  Google Scholar 

  • Craig H (1957) Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12:133–137

    Article  Google Scholar 

  • Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002) Stable isotopes in plant ecology. Ann Rev Ecol Sys 33:507–559

    Article  Google Scholar 

  • DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351

    Article  Google Scholar 

  • Ehleringer JR, Cerling TE (2002) C3 and C4 photosynthesis. In: Munn RE (ed) Encyclopedia of global environmental change. The earth system: biological and ecological dimensions of global environmental change. Wiley, New York, pp 186–190

    Google Scholar 

  • Ehleringer JR, Cerling TE, Helliker BR (1997) C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112:285–299

    Article  Google Scholar 

  • Eickmeier WG, Bender MM (1976) Carbon isotope ratios of crassulacean acid metabolism species in relation to climate and phytosociology. Oecologia 25:341–347

    Article  Google Scholar 

  • Evans RD (2001) Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci 6:121–126

    Article  Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33:317–345

    Article  Google Scholar 

  • Farquhar GD, Hubick KT, Terashima I, Condon AG, Richards RA (1987) Genetic variation in the relationship between photosynthetic CO2 assimilation rate and stomatal conductance to water loss. In: Biggens J (ed.) Progress in photosynthesis research Vol IV. Dordrecht: Martinus Nijhoff Publishers

  • Fernández J, Panarello HO (1999-2001) Isótopos del carbono en la dieta de herbívoros y carnívoros de los Andes Jujeños. Xama 12–14:71–85

  • Fernández J, Markgraf V, Panarello HO, Albero M, Angiolini FE, Valencio S, Arriaga M (1991) Late Pleistocene/early Holocene environments and climates, fauna and human occupation in the Argentine Altiplano. Geoarchaeology 6:251–272

    Article  Google Scholar 

  • Finucane BC, Maita Agurto P, Isbell WH (2006) Human and animal diet at Conchopata, Perú: stable isotope evidence for maize agriculture and animal management practices during the Middle Horizon. J Archaeol Sci 33:1766–1776

    Article  Google Scholar 

  • Handley LL, Raven JA (1992) The use of natural abundance of nitrogen isotopes in plant physiology and ecology. Plant Cell Environ 15:965–985

    Article  Google Scholar 

  • Hartman G (2011) Are elevated δ15N values in herbivores in hot and arid environments caused by diet or animal physiology? Funct Ecol 25(1):122–131

    Article  Google Scholar 

  • Hartman G, Danin A (2010) Isotopic values of plants in relation to water availability in the eastern Mediterranean region. Oecologia 162:837–852

    Article  Google Scholar 

  • Hastorf CA (1985) Dietary reconstruction in the Andes. Anthropol Today 6:19–21

  • Heaton THE (1987) The 15N/14N ratios of plants in South Africa and Namibia: relationship to climate and coastal/saline environments. Oecologia 74:236–246

    Article  Google Scholar 

  • Heaton THE (1999) Spatial, species and temporal variation in the 13C/12C ratios of C3 plants: implications for palaeodiet studies. J Archaeol Sci 26:637–650

    Article  Google Scholar 

  • Heaton THE, Vogel JC, von la Chevallerie G, Collett G (1986) Climatic influence on the isotopic composition of bone nitrogen. Nature 322:822–823

    Article  Google Scholar 

  • Hobbie EA, Macko SA, Williams M (2000) Correlations between foliar δ15N and nitrogen concentrations may indicate plant–mycorrhizal interactions. Oecologia 122:273–283

    Article  Google Scholar 

  • Katzenberg MA, Weber A (1999) Stable isotope ecology and palaeodiet in the Lake Baikal region of Siberia. J Archaeol Sci 26:651–659

    Article  Google Scholar 

  • Kellner CM, Schoeninger MJ (2007) A simple carbon isotope model for reconstructing prehistoric human diet. Am J Phys Anthropol 133(4):1112–1127

    Article  Google Scholar 

  • Kelly JF (2000) Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Can J Zool 78:1–27

    Article  Google Scholar 

  • Knudson KJ, Webb E, White C, Longstaffe FJ (2014) Baseline data for Andean paleomobility research: a radiogenic strontium isotope study of modern Peruvian agricultural soils. Archaeol Anthropol Sci 6(3):205–219

    Article  Google Scholar 

  • Koch PL, Behrensmeyer AK, Fogel ML (1991) The isotopic ecology of plants and animals in Amboseli National Park. Kenya. Annual Report of the Director Geophysical Laboratory, Washington, DC, pp 163–171

    Google Scholar 

  • Koch PL, Fogel ML, Tuross N (1994) Tracing the diets of fossil animals using stable isotopes. In: Lajtha K, Michener B (eds) Stable isotopes in ecology and environmental science. Blackwell Scientific Publications, Oxford, pp 63–92

    Google Scholar 

  • Körner C, Farquhar GD, Roskandics S (1988) A global survey of carbon isotope discrimination in plants from high altitude. Oecologia 74:623–632

    Article  Google Scholar 

  • Körner C, Farquhar GD, Wong C (1991) Carbon isotope discrimination by plants follows latitudinal and altitudinal trends. Oecologia 88:30–40

    Article  Google Scholar 

  • Lee-Thorp JA, Sealy JC, van der Merwe NJ (1989) Stable carbon isotope ratio differences between bone collagen and bone apatite and their relationship to diet. J Archaeol Sci 16:585–599

    Article  Google Scholar 

  • Llano C (2009) Photosynthetic pathways, spatial distribution, isotopic ecology, and implications for pre-Hispanic human diets in central-western Argentina. Int J Osteoarchaeol 19:130–143

    Article  Google Scholar 

  • Madgwick R, Sykes N, Miller H, Symmons R, Morris J, Lamb A (2013) Fallow deer (Dama dama dama) management in Roman south-east Britain. Archaeol Anthropol Sci 5:111–122

    Article  Google Scholar 

  • Makarewicz C, Tuross N (2012) Finding fodder and tracking transhumance: isotopic detection of early goat domestication processes in the Near East. Curr Anthropol 53:495–505

    Article  Google Scholar 

  • Marshall JD, Zhang J (1994) Carbon isotope discrimination and water-use efficiency in native plants of the north-central Rockies. Ecology 75:1887–1895

    Article  Google Scholar 

  • Mengoni Goñalons GL (2007) Camelid management during Inca times in N. W. Argentina: models and archaeozoological indicators. Anthropozoologica 42:129–141

  • Müldner G, Richards MP (2005) Fast or feast: reconstructing diet in later medieval England by stable isotope analysis. J Archaeol Sci 32:39–48

    Article  Google Scholar 

  • Müldner G, Britton K, Ervynck A (2014) Inferring animal husbandry strategies in coastal zones through stable isotope analysis: new evidence from the Flemish coastal plain (Belgium, 1st–15th century AD). J Archaeol Sci 41:322–332

    Article  Google Scholar 

  • Murphy BP, Bowman D (2006) Kangaroo metabolism does not cause the relationship between bone collagen δ15N and water availability. Funct Ecol 20:1062–1069

    Article  Google Scholar 

  • O'Leary MH (1981) Carbon isotope fractionation in plants. Phytochemistry 20:553–567

    Article  Google Scholar 

  • O'Leary MH (1988) Carbon isotopes in photosynthesis. Bioscience 38:325–336

    Article  Google Scholar 

  • Panarello HO, Fernández JC (2002) Stable carbon isotope measurements on hair from wild animals from altiplanic environments of Jujuy, Argentina. Radiocarbon 44:709–716

    Article  Google Scholar 

  • Pate FD (1997) Bone chemistry and paleodiet: reconstructing prehistoric subsistence-settlement systems in Australia. J Anthropol Archaeol 16:103–120

    Article  Google Scholar 

  • Pate FD, Anson TJ (2008) Stable nitrogen isotope values in arid-land kangaroos correlated with mean annual rainfall: potential as a palaeoclimatic indicator. Int J Osteoarchaeol 18(3):317–326

    Article  Google Scholar 

  • Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320

    Article  Google Scholar 

  • Phillips DL, Gregg JW (2001) Uncertainty in source partitioning using stable isotopes. Oecologia 127:171–179

    Article  Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718

    Article  Google Scholar 

  • Price TD, Burton J, Cucina A, Zabala P, Frei R, Tykot RH, Tiesler V (2012) Isotopic studies of human skeletal remains from a sixteenth to seventeenth century AD churchyard in Campeche, Mexico: diet, place of origin, and age. Curr Anthropol 53(4):396–433

    Article  Google Scholar 

  • Richards MP, Pettitt PB, Trinkaus E, Smith FH, Karavanic I, Paunovic M (2000) Neanderthal diet at Vindija and Neanderthal predation: the evidence from stable isotopes. Proc Natl Acad Sci 97:7663–7666

    Article  Google Scholar 

  • Ruthsatz B, Movia C (1975) Relevamiento de las estepas andinas del noreste de la provincia de Jujuy. FECYT, Argentina

    Google Scholar 

  • Samec CT (2012) Variabilidad dietaria en camélidos de la Puna: un modelo actual a partir de la evidencia isotópica. In Kuperszmit et al. (eds.) Entre Pasados y Presentes III. Estudios Contemporáneos en Ciencias Antropológicas. Colección Investigación y Tesis. Editorial MNEMOSYNE. Buenos Aires. pp. 666-683

  • Samec CT (2014) Ecología isotópica en la Puna Seca Argentina: un marco de referencia para el estudio de las estrategias de pastoreo en el pasado. Cuadernos del Instituto Nacional de Antropología y Pensamiento Latinoamericano, Series Especiales 2(1):61-85

  • Samec CT, Morales MR, Yacobaccio HD (2014) Exploring human subsistence strategies and environmental change through stable isotopes in the dry Puna of Argentina. Int J Osteoarchaeol 24:134–148

    Article  Google Scholar 

  • Schoeninger MJ, DeNiro MJ (1984) Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochim Cosmochim Acta 48:625–639

    Article  Google Scholar 

  • Schwarcz H, Schoeninger MJ (1991) Stable isotope analyses in human nutritional ecology. Yrbk Phys Anthropol 34:283–321

    Article  Google Scholar 

  • Sealy JC, Van Der Merwe NJ, Lee Thorp JA, Lanham J (1987) Nitrogen isotope ecology in southern Africa: implications for environmental and dietary tracing. Geochim Cosmochim Acta 51:2707–2717

    Article  Google Scholar 

  • Smith BN, Epstein S (1971) Two categories of 13C/12C ratios for higher plants. Plant Physiol 47:380–384

    Article  Google Scholar 

  • Sparks JP, Ehleringer JR (1997) Leaf carbon isotope discrimination and nitrogen content for riparian trees along elevational transects. Oecologia 109:362–367

    Article  Google Scholar 

  • Stevens RE, Lister AM, Hedges REM (2006) Predicting diet, trophic level and palaeoecology from bone stable isotope analysis: a comparative study of five red deer populations. Oecologia 149:12–21

    Article  Google Scholar 

  • Stevens RE, Lightfoot E, Hamilton J, Cunliffe BW, Hedges REM (2013) One for the master and one for the dame: stable isotope investigations of Iron Age animal husbandry in the Danebury environs. Archaeol Anthropol Sci 5:95–109

    Article  Google Scholar 

  • Swap RJ, Aranibar JN, Dowty PR, Gilhooly WP, Macko SA (2004) Natural abundance of 13C and 15N in C3 and C4 vegetation of southern Africa: patterns and implications. Glob Chang Biol 10:350–358

    Article  Google Scholar 

  • Szpak P (2014) Complexities of nitrogen isotope biogeochemistry in plant-soil systems: implications for the study of ancient agricultural and animal management practices. Front Plant Sci 5:1–19

    Article  Google Scholar 

  • Szpak P, White CD, Longstaffe FJ, Millaire JF, Vásquez Sánchez VF (2013) Carbon and nitrogen isotopic survey of northern Peruvian plants: baselines for paleodietary and paleoecological studies. PLoS One 8, e53763

    Article  Google Scholar 

  • Thornton EK, DeFrance SD, Krigbaum JS, Williams PR (2011) Isotopic evidence for middle horizon to 16th century camelid herding in the Osmore Valley, Peru. Int J Osteoarchaeol 21:544–567

    Article  Google Scholar 

  • Tieszen LL (1991) Natural variations in the carbon isotopes of plants: implications for archaeology, ecology and paleoecology. J Archaeol Sci 18:227–248

    Article  Google Scholar 

  • Tieszen LL (1994) Stable isotopes on the plains: vegetation analyses and diet determinations. In Owsley DW, Jantz RL (eds.) Skeletal Biology in the Great Plains: A Multidisciplinary View. Smithsonian Press. pp. 261-282

  • Tieszen LL, Chapman M (1992) Carbon and nitrogen isotopic status of the major marine and terrestrial resources in the Atacama desert of northern Chile. First World Congress on Mummy Studies. Puerto de la Cruz, Islas Canarias, España, pp 409–425

    Google Scholar 

  • Tieszen LL, Senyimba MM, Imbamba SK, Troughton JH (1979) The distribution of c3 and c4 grasses and carbon isotope discrimination along an altitudinal and moisture gradient in Kenya. Oecologia 37:337–350

    Article  Google Scholar 

  • Towers J, Jay M, Mainland I, Nehlich O, Montgomery J (2011) A calf for all seasons? The potential of stable isotope analysis to investigate prehistoric husbandry practices. J Archaeol Sci 38:1858–1868

    Article  Google Scholar 

  • Tykot R (2004) Stable isotopes and diet: you are what you eat. In: Martini M (ed) Physics methods in archaeometry. Società Italiana di Fisica, Bologna, pp 433–444

    Google Scholar 

  • Virginia RA, Delwiche CC (1982) Natural 15N abundance of presumed N2-fixing and non-N2-fixing plants from selected ecosystems. Oecologia 54:317–325

    Article  Google Scholar 

  • Vuille M, Keimig F (2004) Interannual variability of summertime convective cloudiness and precipitation in the central Andes derived from ISCCP-B3 data. J Clim 17:3334–3348

    Article  Google Scholar 

  • Yacobaccio HD (2007) Andean camelid herding in the south Andes: ethoarchaeological models for archaeozoological research. Anthropozoologica 42:143–154

    Google Scholar 

  • Yacobaccio HD, Madero CM, Malmierca MP (1998) Etnoarqueología de Pastores Surandinos. Grupo Zooarqueología de camélidos, Buenos Aires

    Google Scholar 

  • Yacobaccio HD, Morales MR, Samec CT (2009) Towards an isotopic ecology of herbivory in the Puna ecosystem: new results and patterns in Lama glama. Int J Osteoarchaeol 19:144–155

    Article  Google Scholar 

  • Yacobaccio HD, Samec CT, Catá MP (2010) Isótopos estables y zooarqueología de camélidos en contextos pastoriles de la puna (Jujuy, Argentina). In Gutiérrez MA et al. (eds.) Zooarqueología a principios del siglo XXI. Aportes teóricos, metodológicos y casos de estudio. Editorial del Espinillo, Buenos Aires, pp. 77-86

  • Zhou J, Lau KM (1998) Does a monsoon climate exist over South America? J Clim 11:1020–1040

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank Brenda Oxman, Alicia Cruz, Juan Maryañski, Marcelo Morales and Sabrina Bustos for their help during field trips, and Mariela Borgnia and Francisco Ratto for their collaboration in plant identification. We are grateful to Estela Ducós and Nazareno Piperissa for their invaluable assistance during laboratory procedures. We also wish to thank Guti Tessone, Malena Pirola and Violeta Killian Galván for their insights in discussing the manuscript. We also thank two anonymous reviewers for their careful reading of the manuscript and detailed comments, which greatly improved the quality of our work. This research was supported by grants from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET PIP 0569), the Universidad de Buenos Aires (UBACyT 230BA) and the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT PICT 2013-0479).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celeste T. Samec.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 21.4 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samec, C.T., Yacobaccio, H.D. & Panarello, H.O. Carbon and nitrogen isotope composition of natural pastures in the dry Puna of Argentina: a baseline for the study of prehistoric herd management strategies. Archaeol Anthropol Sci 9, 153–163 (2017). https://doi.org/10.1007/s12520-015-0263-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12520-015-0263-2

Keywords

Navigation