Archaeological and Anthropological Sciences

, Volume 8, Issue 4, pp 819–837 | Cite as

Validating niche-construction theory through path analysis

  • William A. Brock
  • Michael J. O’Brien
  • R. Alexander Bentley
Original Paper


Under the conventional view of evolution, species over time come to exhibit those characteristics that best enable them to survive and reproduce in their preexisting environments. Niche construction provides a second evolutionary route to establishing the adaptive fit, or match, between organism and environment, viewing such matches as dynamical products of a two-way process involving organisms both responding to problems posed by environments as well as setting themselves new problems by changing their environments through further niche construction. Not surprising, the analysis of niche construction is complicated. For example, variables of interest might contain measurement error, or some variables might not be observable. In other cases, variables might not be datable and have to be measured at the same date. A time-series generalization of path analysis, which itself can be viewed as a version of simultaneous-equation analysis, offers a means of highlighting causal relationships in complex systems of niche construction by graphically representing a hypothesis of causality between variables and, in some instances, providing an estimated weight that a hypothesized causal variable has on another variable. Path analysis forces researchers to specify how variables relate to one another and encourages development of clear and logical theories concerning the processes that influence a particular outcome. As we show through a case study—the coevolution of cattle husbandry and the tolerance for milk consumption—path analysis can also call attention to potential areas of weakness and ambiguity in data sets and how they are used in constructing inferences.


Dairying Granger causality Lactase persistence Neolithic Niche-construction theory Path analysis 



We thank Lisa Hildebrand and two anonymous reviewers for numerous helpful comments on earlier drafts. We are also grateful to Nick Conard for his kind assistance during the review process.


  1. Akaike H (1973) Information theory and an extension of the likelihood-ratio principle. In: Petrov BN, Csaki F (eds) Proceedings of the Second International Symposium on Information Theory. Akademia Kiado, Budapest, pp 257–281Google Scholar
  2. Ammerman AJ, Cavalli-Sforza LL (1984) The Neolithic transition and the genetics of populations in Europe. Princeton University Press, PrincetonCrossRefGoogle Scholar
  3. Aoki KA (1996) Stochastic model of gene-culture coevolution suggested by the “culture historical hypothesis” for the evolution of adult lactose absorption in humans. Proc Natl Acad Sci 83:2929–2933CrossRefGoogle Scholar
  4. Bahadori T, Liu Y (2013) An examination of practical Granger causality. SIAM Conference on Data Mining, (SDM’13), available at and
  5. Bentley RA, Bickle P, Fibiger L, Nowell GM, Dale CW, Hedges REM, Hamilton J et al (2012) Communty differentiation and kinship among Europe’s first farmers. Proc Natl Acad Sci 109:9326–9330CrossRefGoogle Scholar
  6. Bersaglieri T, Sabeti PC, Patterson N, Vanderploeg T, Schaffner SF, Drake JA, Rhodes M, Reich DE, Hirschhorn JN (2004) Genetic signatures of strong recent positive selection at the lactase gene. Am J Hum Genet 74:1111–1120CrossRefGoogle Scholar
  7. Bocquet-Appel JP (2011) When the world's population took off: the springboard of the Neolithic demographic transition. Science 333:560–561CrossRefGoogle Scholar
  8. Bogaard A (2004) Neolithic farming in central Europe. Routledge, LondonGoogle Scholar
  9. Bogaard A, Strien HC, Krause R (2011) Towards a social geography of cultivation and plant use in an early farming community: Vaihingen an der Enz, south-west Germany. Antiquity 85:395–416CrossRefGoogle Scholar
  10. Bogucki P (1984) Linear pottery ceramic sieves and their economic implications. Oxf J Archaeol 3:15–30CrossRefGoogle Scholar
  11. Bogucki P (1986) The antiquity of dairying in temperate Europe. Expedition 28:51–58Google Scholar
  12. Bogucki P (1993) Animal traction and household economies in Neolithic Europe. Antiquity 67:492–503CrossRefGoogle Scholar
  13. Boni MF, Feldman MW (2005) Evolution of antibiotic resistance by human and bacterial niche construction. Evolution 59:477–491Google Scholar
  14. Borenstein E, Kendal J, Feldman MW (2006) Cultural niche construction in a metapopulation. Theor Popul Biol 70:92–104CrossRefGoogle Scholar
  15. Brodie DE III (2005) Caution: niche construction ahead. Evolution 59:249–251CrossRefGoogle Scholar
  16. Broughton JM, Cannon MD, Bartlelink EJ (2010) Evolutionary ecology, resource depression, and niche construction theory: applications to central California hunter–gatherers and Mimbres–Mogollon agriculturalists. J Archaeol Method Theor 17:371–421CrossRefGoogle Scholar
  17. Burger J, Kirchner M, Bramanti B, Haak W, Thomas MG (2007) Absence of the lactase-persistence-associated allele in Early Neolithic Europeans. Proc Natl Acad Sci 104:3736–3741CrossRefGoogle Scholar
  18. Chaix L (1997) La transition Meso-Neolithique: quelques donnees de 1’archeozoologie dans les Alpes du Nord et le Jura. In: Jeunesse C (ed) Le Neolithique Danubien et ses marges entre Rhin et Seine. Cahiers de Association pour la Promotion de la Recherche Archeologique en Alsace. Supplement no. 3, Alsace-Lorraine, pp 191–196Google Scholar
  19. Clarke K (2005) The phantom menace: omitted variable bias in econometric research. Conflict Manage Peace Sci 22:341–352CrossRefGoogle Scholar
  20. Coelho M, Luiselli D, Bertorelle G, Lopes AI, Seixas S, Destro-Bisol G, Rocha J (2005) Microsatellite variation and evolution of human lactase persistence. Hum Genet 117:329–339CrossRefGoogle Scholar
  21. Cogley T, de Paoli B, Matthes C, Nikolov K, Yates T (2011) A Bayesian approach to optimal monetary policy with parameter and model uncertainty. J Econ Dyn Control 35:2186–2212CrossRefGoogle Scholar
  22. Collard M, Edinborough K, Shennan S, Thomas MG (2010) Radiocarbon evidence indicates that migrants introduced farming to Britain. J Archaeol Sci 37:866–870CrossRefGoogle Scholar
  23. Collard M, Buchanan B, Ruttle A, O’Brien MJ (2011) Niche construction and the toolkits of hunter–gatherers and food producers. Biol Theor 6:251–259CrossRefGoogle Scholar
  24. Conolly J, Colledge S, Dobney K, Vigne JD, Peters J, Stopp B, Manning K, Shennan S (2011) Meta-analysis of zooarchaeological data from SW Asia and SE Europe provides insight into the origins and spread of animal husbandry. J Archaeol Sci 38:538–545CrossRefGoogle Scholar
  25. Conolly J, Manning K, Colledge S, Dobney K, Shennan S (2012) Species distribution modeling of ancient cattle from early Neolithic sites in SW Asia and Europe. Holocene 22:997–1010CrossRefGoogle Scholar
  26. Copley MS, Berstan R, Dudd SN, Docherty G, Mukherjee AJ, Straker V, Payne S, Evershed RP (2003) Direct chemical evidence for widespread dairying in prehistoric Britain. Proc Natl Acad Sci 100:1524–1529CrossRefGoogle Scholar
  27. Copley MS, Berstan R, Dudd SN, Aillaud S, Mukherjee AJ, Straker V, Payne S, Evershed RP (2005) Processing of milk products in pottery vessels through British prehistory. Antiquity 79:895–908Google Scholar
  28. Craig OE, Chapman J, Heron C, Willis LH, Bartosiewicz L, Taylor G, Whittle A, Collins M (2005a) Did the first farmers of central and eastern Europe produce dairy foods? Antiquity 79:882–894Google Scholar
  29. Craig OE, Taylor G, Mulville J, Collins M, Parker Pearson M (2005b) The identification of prehistoric dairying activities in the western Isles of Scotland: an integrated biomolecular approach. J Archaeol Sci 32:91–103CrossRefGoogle Scholar
  30. Creanza N, Fogarty L, Feldman MW (2012) Models of niche construction with selection and assortative mating. PLoS ONE 7(8):e42744CrossRefGoogle Scholar
  31. Curry A (2013) Archaeology: the milk revolution. Nature 500:20–22CrossRefGoogle Scholar
  32. Dawkins R (2004) Extended phenotype—but not too extended. A reply to Laland, Turn and Jablonka. Biol Philos 19:377–396CrossRefGoogle Scholar
  33. Diks C, Panchenko V (2006) A new statistic and practical guidelines for nonparametric Granger causality testing. J Econ Dyn Control 30:1647–1669CrossRefGoogle Scholar
  34. Donohue K (2005) Niche construction through phonological plasticity: life history dynamics and ecological consequences. New Phytol 166:83–92CrossRefGoogle Scholar
  35. Dudd SN, Evershed RP (1998) Direct demonstration of milk as an element of archaeological economies. Science 282:1478–1481CrossRefGoogle Scholar
  36. Dunbar RIM, Shultz S (2007) Understanding primate brain evolution. Philos Trans R Soc B 362:649–658CrossRefGoogle Scholar
  37. Edwards CJ, Bollongino R, Scheu A, Chamberlain A, Tresset A, Vigne JD, Baird JF (2007) Mitochondrial DNA analysis shows a Near Eastern Neolithic origin for domestic cattle and no indication of domestication of European aurochs. Proc R Soc B 274:1377–1385CrossRefGoogle Scholar
  38. Eichler M (2007) Granger causality and path diagrams for multivariate time series. J Econometrics 137:334–353CrossRefGoogle Scholar
  39. Enattah NS, Sahi T, Savilahti E, Terwilliger JD, Peltonen L, Jarvela I (2002) Identification of a variant associated with adult-type hypolactasia. Nat Genet 30:233–237CrossRefGoogle Scholar
  40. Engle RF, Hendry DF, Richard JF (1983) Exogeneity. Econometrica 51:277–304CrossRefGoogle Scholar
  41. Ericsson NR (1992) Co-integration, exogeneity, and policy analysis: an overview. J Policy Model 14:251–280CrossRefGoogle Scholar
  42. Erwin DH (2008) Macroevolution of ecosystem engineering, niche construction and diversity. Trends Ecol Evol 23:304–310CrossRefGoogle Scholar
  43. Evershed RP, Payne S, Sherratt AG, Copley MS, Coolidge J, Urem-Kotsu D, Kotsakis K et al (2008) Earliest date for milk use in the Near East and southeastern Europe linked to cattle herding. Nature 455:528–531CrossRefGoogle Scholar
  44. Feldman MW, Cavalli-Sforzi LL (1989) On the theory of evolution under genetic and cultural transmission with application to the lactose absorption problem. In: Feldman MW (ed) Mathematical evolutionary theory. Princeton University Press, Princeton, pp 145–173CrossRefGoogle Scholar
  45. Feldman MW, Laland KN (1996) Gene-culture co-evolutionary theory. Trends Ecol Evol 11:453–457CrossRefGoogle Scholar
  46. Flatz G (1987) Genetics of lactose digestion in humans. Adv Hum Genet 16:1–77CrossRefGoogle Scholar
  47. Freedman DA (2004) On specifying graphical models for causation and the identification problem. Eval Rev 28:267–293CrossRefGoogle Scholar
  48. Furrow RE, Christiansen FB, Feldman MW (2011) Environment-sensitive epigenetics and the heritability of complex diseases. Genetics 189:1377–1387CrossRefGoogle Scholar
  49. Gamba C, Jones ER, Teasdale MD, McLaughlin RL, Gonzalez-Fortes G, Mattiangeli V, Domboróczki KI, Pap I, Anders A, Whittle A, Dani J, Raczky P, Higham TFG, Hofreiter M, Bradley DG, Pinhasi R (2014) Genome flux and statis in a five millennium transect of European prehistory. Nat Commun 5:5257CrossRefGoogle Scholar
  50. Gamble C, Davies W, Pettitt P, Hazelwood L, Richards M (2005) The archaeological and genetic foundations of the European population during the late glacial implications for ‘agricultural thinking.’ Camb Archaeol J 15:193e223CrossRefGoogle Scholar
  51. Gerbault P, Liebert A, Itan Y, Powell A, Currat M, Burger J, Swallow DM, Thomas MG (2011) Evolution of lactase persistence: an example of human niche construction. Philos Trans R Soc B 366:863–877CrossRefGoogle Scholar
  52. Gerbault P, Roffet-Salque M, Evershed R, Thomas M (2013) How long have adult humans been drinking milk? Int Union Biochem Mol Biol 65:983–990CrossRefGoogle Scholar
  53. Geweke J (1984) Inference and causality in economic time series. In: Griliches Z, Intriligator MD (eds) Handbook of econometrics, vol. 2. North-Holland, Amsterdam, pp 1101–1144CrossRefGoogle Scholar
  54. Gkiasta M, Russell T, Shennan SJ, Steele J (2003) Neolithic transition in Europe: the radiocarbon record revisited. Antiquity 77:45–62CrossRefGoogle Scholar
  55. Godfrey-Smith P (1996) Complexity and the function of mind in nature. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  56. Granger CWJ (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37:424–438CrossRefGoogle Scholar
  57. Greene WH (2003) Econometric analysis (fifth ed). Prentice Hall, Upper Saddle RiverGoogle Scholar
  58. Gregg S (1988) Foragers and farmers: population interaction and agricultural expansion in prehistoric Europe. University of Chicago Press, ChicagoGoogle Scholar
  59. Han X, Hui C (2014) Niche contruction on environmental gradients: the formation of fitness valley and stratified genotypic distributions. PLoS ONE 9(6):e99775CrossRefGoogle Scholar
  60. Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, OxfordGoogle Scholar
  61. Harvey CB, Hollox EJ, Poulter M, Wang Y, Rossi M, Auricchio S, Iqbal TH et al (1998) Lactase haplotype frequencies in Caucasians: association with the lactase persistence/non-persistence polymorphism. Ann Hum Genet 62:215–223CrossRefGoogle Scholar
  62. Hauser RM, Goldberger AS (1971) The treatment of unobserved variables in path analysis. Sociol Methodol 3:81–117CrossRefGoogle Scholar
  63. Heckman J, Pinto R (2014) Causal analysis after Haavelmo. Economet Theor 31:1–37Google Scholar
  64. Helmer D, Gourichon L, Monchot H, Peters J, Sana Segui M (2005) Identifying early domestic cattle from pre-pottery Neolithic sites on the Middle Euphrates using sexual dimorphism. In: Vigne JD, Peters J, Helmer D (eds) The first steps of animal domestication: new archaeozoological approaches. Oxbow, Oxford, pp 86–95Google Scholar
  65. Holden C, Mace R (1997) Phylogenetic analysis of the evolution of lactose digestion in adults. Hum Biol 69:605–628Google Scholar
  66. Hollox EJ, Poulter M, Zvarik M, Ferak V, Krause A, Jenkins T, Saha N et al (2001) Lactase haplotype diversity in the Old World. Am J Hum Genet 68:160–172CrossRefGoogle Scholar
  67. Ihara Y, Feldman MW (2004) Cultural niche construction and the evolution of small family size. Theor Popul Biol 65:105–111CrossRefGoogle Scholar
  68. Ingram CJ, Mulcare CA, Itan Y, Thomas MG, Swallow DM (2009) Lactose digestion and the evolutionary genetics of lactase persistence. Hum Genet 124:579–591CrossRefGoogle Scholar
  69. Itan Y, Powell A, Beaumont MA, Burger J, Thomas MG (2009) The origins of lactase persistence in Europe. PLoS Comput Biol 5(8):e1000491CrossRefGoogle Scholar
  70. Itan Y, Jones BL, Ingram CJ, Swallow DM, Thomas MG (2010) A worldwide correlation of lactase persistence phenotype and genotypes. BMC Evol Biol 10:36CrossRefGoogle Scholar
  71. Jeunesse C, Arbogast RM (1997) A propos du statut de la chasse au Neolithique moyen. La faune sauvage dans les dechets domestiques et dans les mobiliers funeraires. In: Jeunesse C (ed) Le Neolithique Danubien et ses marges entre Rhin et Seine. Cahiers de Association pour la Promotion de la Recherche Archeologique en Alsace. Supplement no. 3, Alsace-Lorraine, pp 81–102Google Scholar
  72. Jones CI (1995) Time series tests of endogenous growth models. Q J Econ 110:495–525CrossRefGoogle Scholar
  73. Jones CG, Lawton JH, Shachak M (1997) Positive and negative effects of organisms as physical ecosystem engineers. Oikos 69:373–386CrossRefGoogle Scholar
  74. Kendal JR, Tehrani JJ, Odling-Smee FJ (2011) Human niche construction in interdisciplinary focus. Philos Trans R Soc B 366:785–792CrossRefGoogle Scholar
  75. Krakauer DC, Page KM, Erwin D (2009) Diversity, dilemmas, and monopolies of niche construction. Am Nat 173:26–40CrossRefGoogle Scholar
  76. Krüttli A, Bouwman A, Akgül G, Della Casa P, Rühli F, Warinner C (2014) Ancient DNA analysis reveals high frequency of European lactase persistence allele (T-13910) in Medieval central Europe. PLoS ONE 9(1):e86251CrossRefGoogle Scholar
  77. Laland KN, Brown G (2006) Niche construction, human behavior, and the adaptive-lag hypothesis. Evol Anthropol 15:95–104CrossRefGoogle Scholar
  78. Laland KN, O’Brien MJ (2010) Niche construction theory and archaeology. J Archaeol Method Theor 17:303–322CrossRefGoogle Scholar
  79. Laland KN, O’Brien MJ (2011) Cultural niche construction: an introduction. Biol Theor 6:191–202CrossRefGoogle Scholar
  80. Laland KN, Sterelny K (2006) Seven reasons (not) to neglect niche construction. Evolution 60:1751–1762CrossRefGoogle Scholar
  81. Laland KN, Odling-Smee FJ, Feldman MW (1996) On the evolutionary consequences of niche construction. J Evol Biol 9:293–316CrossRefGoogle Scholar
  82. Laland KN, Odling-Smee FJ, Feldman MW (1999) The evolutionary consequences of niche construction and their implications for ecology. Proc Natl Acad Sci 96:10242–10247CrossRefGoogle Scholar
  83. Laland KN, Odling-Smee FJ, Feldman MW (2000) Niche construction, biological evolution, and cultural change. Behav Brain Sci 23:131–175CrossRefGoogle Scholar
  84. Laland KN, Odling-Smee FJ, Feldman MW (2001) Cultural niche construction and human evolution. J Evol Biol 14:22–23CrossRefGoogle Scholar
  85. Laland KN, Kendal JR, Brown GR (2007) The niche construction perspective: implications for evolution and human behavior. J Evol Psychol 5:51–66CrossRefGoogle Scholar
  86. Laland KN, Odling-Smee FJ, Feldman MW, Kendal J (2009) Conceptual barriers to progress within evolutionary biology. Found Sci 14:195–216CrossRefGoogle Scholar
  87. Laland KN, Odling-Smee FJ, Myles S (2010) How culture shaped the human genome: bringing genetics and the human sciences together. Nat Rev Genet 11:137–148CrossRefGoogle Scholar
  88. Lee T, White H, Granger C (1993) Testing for neglected nonlinearity in time series models: a comparison of neural network methods and alternative tests. J Econometrics 56:263–290CrossRefGoogle Scholar
  89. Lehmann L (2008) The adaptive dynamics of niche constructing traits in spatially subdivided populations: evolving posthumous extended phenotypes. Evolution 62:549–566CrossRefGoogle Scholar
  90. Leonardi M, Gerbault P, Thomas MG, Burger J (2012) The evolution of lactase persistence in Europe: a synthesis of archaeological and genetic evidence. Int Dairy J 22:88–97CrossRefGoogle Scholar
  91. Levins R, Lewontin RC (1985) The dialectical biologist. Harvard University Press, CambridgeGoogle Scholar
  92. Lewontin RC (1983) Gene, organism, and environment. In: Bendall DS (ed) Evolution from molecules to men. Cambridge University Press, Cambridge, pp 273–285Google Scholar
  93. Lewontin RC (2000) The triple helix: gene, organism and environment. Harvard University Press, CambridgeGoogle Scholar
  94. Lleros C (2005) Path analysis. In: Kempf-Leonard K (ed) Encyclopedia of social measurement (vol. 3). Elsevier, New York, pp 25–30CrossRefGoogle Scholar
  95. Lomer MC, Parkes GC, Sanderson JD (2008) Review article: lactose intolerance in clinical practice–myths and realities. Aliment Pharmacol Ther 27:93–103CrossRefGoogle Scholar
  96. Mace R (1998) The co-evolution of human fertility and wealth inheritance strategies. Philos Trans R Soc 353:389–397CrossRefGoogle Scholar
  97. Mace R (2009) Update to Holden and Mace’s “Phylogenetic analysis of the evolution of lactose digestion in adults” (1997): revisiting the coevolution of human cultural and biological diversity. Hum Biol 81:621–624CrossRefGoogle Scholar
  98. Manning KM, Downey SS, Colledge S, Conolly J, Stopp B, Dobney K, Shennan S (2014) The origins and spread of stock-keeping: the role of cultural and environmental influences on early Neolithic animal exploitation in Europe. Antiquity 87:1046–1059CrossRefGoogle Scholar
  99. Manski CF (2005) Social choice with partial knowledge of treatment response. Princeton University Press, PrincetonGoogle Scholar
  100. Maruyama G (1998) Basics of structural equation modeling. Sage, Thousand OaksCrossRefGoogle Scholar
  101. McCracken RD (1971) Lactase deficiency: an example of dietary evolution. Curr Anthropol 12:479–517CrossRefGoogle Scholar
  102. Mulcare CA (2006) The evolution of the lactase persistence phenotype. Ph.D. dissertation, University of London, LondonGoogle Scholar
  103. Mulcare CA, Weale ME, Jones AL, Connell B, Zeitlyn D, Tarekegn A, Swallow DM, Bradman N, Thomas MG (2004) The T allele of a single-nucleotide polymorphism 13.9 kb upstream of the lactase gene (LCT) (C-13.9kbT) does not predict or cause the lactase-persistence phenotype in Africans. Am J Hum Genet 74:1102–1110CrossRefGoogle Scholar
  104. Myles S, Bouzekri N, Haverfield E, Cherkaoui M, Dugoujon JM, Ward M (2005) Genetic evidence in support of a shared Eurasian–North African dairying origin. Hum Genet 117:34–42CrossRefGoogle Scholar
  105. Nagy D, Tömóry G, Csányi B, Bogácsi-Szabó CA, Priskin K, Bede O, Bartosiewicz L, Downes S, Raskó I (2011) Comparison of lactase persistence polymorphism in ancient and present-day Hungarian populations. Am J Phys Anthropol 145:262–269CrossRefGoogle Scholar
  106. Neyman J, Pearson CS (1928) On the use and interpretation of certain test criteria for purposes of statistical inference. Biometrika 20A:175–240Google Scholar
  107. O’Brien MJ, Bentley RA (2015) The role of food storage in human niche construction: an example from Neolithic Europe. Environ Archaeol (in press)Google Scholar
  108. O’Brien M, Laland KN (2012) Genes, culture and agriculture: an example of human niche construction. Curr Anthropol 53:434–470CrossRefGoogle Scholar
  109. Odling-Smee FJ (1988) Niche-constructing phenotypes. In: Plotkin HC (ed) The role of behavior in evolution. MIT Press, Cambridge, pp 73–132Google Scholar
  110. Odling-Smee FJ (2010) Niche inheritance. In: Pigliucci M, Müller GB (eds) Evolution: the extended synthesis. MIT Press, Cambridge, pp 175–207CrossRefGoogle Scholar
  111. Odling-Smee FJ, Laland KN (2011) Ecological inheritance and cultural inheritance: what are they and how do they differ? Biol Theor 6:220–230CrossRefGoogle Scholar
  112. Odling-Smee FJ, Turner JS (2011) Niche construction theory and human architecture. Biol Theor 6:283–289CrossRefGoogle Scholar
  113. Odling-Smee FJ, Laland KN, Feldman MW (2003) Niche construction: the neglected process in evolution. Princeton University Press, PrincetonGoogle Scholar
  114. Oyama S, Griffiths PE, Gray RD (2001) Cycles of contingency: developmental systems and evolution. MIT Press, CambridgeGoogle Scholar
  115. Pearl J (1995) Causal diagrams for empirical research. Biometrika 82:669–710CrossRefGoogle Scholar
  116. Pearl J (2009) Causality: models, reasoning, and inference, 2nd edn. Cambridge University Press, New YorkCrossRefGoogle Scholar
  117. Peters J, von den Dreisch A, Helmer D (2005) The upper Euphrates–Tigris basin: cradle of agro-pastoralism? In: Vigne JD, Peters J, Helmer D (eds) The first steps of animal domestication: new archaeozoological approaches. Oxbow, Oxford, pp 96–124Google Scholar
  118. Pinhasi R, Fort J, Ammerman AJ (2005) Tracing the origin and spread of agriculture in Europe. PLoS Biol 3(12):e410CrossRefGoogle Scholar
  119. Rendell L, Fogarty L, Laland KN (2011) Runaway cultural niche construction. Philos Trans R Soc B 366:823–835CrossRefGoogle Scholar
  120. Riede F (2011) Adaptation and niche construction in human prehistory: a case study from the southern Scandinavian Late Glacial. Philos Trans R Soc B 366:793–808CrossRefGoogle Scholar
  121. Rowley-Conwy P, Layton R (2011) Foraging and farming as niche construction: stable and unstable adaptations. Philos Trans R Soc B 366:849–862CrossRefGoogle Scholar
  122. Salque M, Bogucki P, Pyzel J, Sobkowiak-Tabaka I, Grygiel R, Szmyt M, Evershed RP (2013) Earliest evidence for cheese making in the sixth millennium BC in northern Europe. Nature 493:522–525CrossRefGoogle Scholar
  123. Scheiner SM, Mitchell RJ, Callahan HS (2000) Using path analysis to measure natural selection. J Evol Biol 13:423–433CrossRefGoogle Scholar
  124. Schlebusch CM, Sjödin P, Skoglund P, Jakobsson M (2013) Stronger signal of recent selection for lactase persistence in Maasai than in Europeans. Euro J Human Genet 21:550–553CrossRefGoogle Scholar
  125. Schwilk DW, Ackerly DD (2001) Flammability and serotiny as strategies: correlated evolution in pines. Oikos 94:326–336CrossRefGoogle Scholar
  126. Scott-Phillips TC, Laland KN, Shuker DM, Dickins TE, West SA (2014) The niche construction perspective: a critical appraisal. Evolution 68:1231–1243CrossRefGoogle Scholar
  127. Shennan SJ (2000) Population, culture history and the dynamics of culture change. Curr Anthropol 41:811–835CrossRefGoogle Scholar
  128. Shennan SJ (2011) Property and wealth inequality as cultural niche construction. Philos Trans R Soc B 366:918–926CrossRefGoogle Scholar
  129. Shennan S, Downey SS, Timpson A, Edinborough K, Colledge S, Kerig T, Manning K, Thomas MG (2013) Regional population collapse followed initial agriculture booms in mid-Holocene Europe. Nat Commun 4:2486CrossRefGoogle Scholar
  130. Shipley B (2000) Cause and correlation in biology: a user’s guide to path analysis, structural equations and causal inference. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  131. Silver M, Di Paolo E (2006) Spatial effects favour the evolution of niche construction. Theor Popul Biol 70:387–400CrossRefGoogle Scholar
  132. Simoons FJ (1970) Primary adult lactose intolerance and the milking habit: a problem in biological and cultural interrelations. 2. A culture historical hypothesis. Am J Dig Dis 15:695–710CrossRefGoogle Scholar
  133. Smith BD (2007a) The ultimate ecosystem engineers. Science 315:1797–1798CrossRefGoogle Scholar
  134. Smith BD (2007b) Niche construction and the behavioral context of plant and animal domestication. Evol Anthropol 16:188–199CrossRefGoogle Scholar
  135. Smith BD (2009) Resource resilience, human niche construction, and the long-term sustainability of pre-Columbian subsistence economies in the Mississippi River valley corridor. J Ethnobiol 29:167–183CrossRefGoogle Scholar
  136. Smith BD (2011a) General patterns of niche construction and the management of ‘wild’ plant and animal resources by small-scale pre-industrial societies. Philos Trans R Soc B 366:836–848CrossRefGoogle Scholar
  137. Smith BD (2011b) A cultural niche construction theory of initial domestication. Biol Theory 6:260–271CrossRefGoogle Scholar
  138. Smith BD (2015) A comparison of niche construction theory and diet breadth models as frameworks of explanation for the initial domestication of plants and animals. J Archaeol Res 23:215–262Google Scholar
  139. Stehli P (1989) Merzbachtal—Umwelt und Geschichte einer bandkermischen Siedlungskammer. Germania 67:51–76Google Scholar
  140. Timpson A, Colledge S, Crema E, Edinborough K, Kerig T, Manning K, Thomas MG, Shennan S (2014) Reconstructing regional population fluctuations in the European Neolithic using radiocarbon dates: a new case-study using an improved method. J Archaeol Sci 52:549–557CrossRefGoogle Scholar
  141. Tishkoff SA, Reed FA, Ranciaro A, Voight BF, Babbitt CC, Silverman JS, Powell K et al (2006) Convergent adaptation of human lactase persistence in Africa and Europe. Nat Genet 39:31–40CrossRefGoogle Scholar
  142. Troy CS, MacHugh DE, Bailey JF, Magee DA, Loftus RT, Cunningham P et al (2001) Genetic evidence for Near-Eastern origins of European cattle. Nature 410:1088–1091CrossRefGoogle Scholar
  143. Ulijaszek SJ, Strickland SS (1993) Nutritional anthropology: prospects and perspectives. Smith-Gordon, LondonGoogle Scholar
  144. Vigne JD (2008) Zooarchaeological aspects of the Neolithic diet transition in the Near East and Europe, and their putative relationships with the Neolithic demographic transition. In: Bocquet-Appel JP, Bar-Yosef O (eds) The Neolithic demographic transition and its consequences. Springer, Berlin, pp 179–205CrossRefGoogle Scholar
  145. Vigne JD, Helmer D (2007) Was milk a “secondary product” in the Old World Neolithisation process? Its role in the domestication of cattle, sheep and goats. Anthropozoologica 42:9–40Google Scholar
  146. Vuong Q (1989) Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica 57:307–333CrossRefGoogle Scholar
  147. White H (1996) Estimation, inference, and specification analysis. Cambridge University Press, CambridgeGoogle Scholar
  148. Wolfle LM (2003) The introduction of path analysis to the social sciences, and some emergent themes: an annotated bibliography. Struct Equ Model 10:1–34CrossRefGoogle Scholar
  149. Wollstonecroft M (2011) Investigating the role of food processing in human evolution: a niche construction approach. Archaeol Anthropol Sci 3:141–150CrossRefGoogle Scholar
  150. Wooding SP (2007) Following the herd. Nat Genet 39:7–8CrossRefGoogle Scholar
  151. Wright S (1921) Correlation and causation. J Agric Res 20:557–585Google Scholar
  152. Wright S (1934) The method of path coefficients. Ann Math Stat 5:161–215CrossRefGoogle Scholar
  153. Wright J (2006) The concept of organisms as ecosystem engineers ten years on: progress, limitations, and challenges. Bioscience 56:203–209CrossRefGoogle Scholar
  154. Zeder MA (2012) The broad spectrum revolution at 40: resource diversity, intensification, and an alternative to optimal foraging explanations. J Anthropol Archaeol 31:241–264CrossRefGoogle Scholar
  155. Zeder MA (2015) Core concepts in domestication research. Proc Natl Acad Sci 112:3191–3198CrossRefGoogle Scholar
  156. Zeder MA, Hesse B (2000) The initial domestication of goats (Capra hircus) in the Zagros Mountains 10,000 years ago. Science 287:2254–2257CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • William A. Brock
    • 1
    • 2
  • Michael J. O’Brien
    • 3
  • R. Alexander Bentley
    • 4
  1. 1.Department of EconomicsUniversity of MissouriColumbiaUSA
  2. 2.Department of EconomicsUniversity of WisconsinMadisonUSA
  3. 3.Department of AnthropologyUniversity of MissouriColumbiaUSA
  4. 4.Department of Comparative Cultural StudiesUniversity of HoustonHoustonUSA

Personalised recommendations