Plant use and local vegetation patterns during the second half of the Late Pleistocene in southwestern Germany

  • Simone Riehl
  • Elena Marinova
  • Katleen Deckers
  • Maria Malina
  • Nicholas J. Conard
Original Paper


In light of recent discoveries of early figurative art in Paleolithic sites of southwestern Germany, gaining an improved understanding of biological, cultural, and social development of these hunter-gatherer populations under past environmental conditions is essential. The analysis of botanical micro- and macrofossils from the Hohle Fels Cave contributes to the limited floral record from this region. These data suggest generally open vegetation, with the presence of wood near Hohle Fels, as indicated by pollen, phytoliths, and evidence from wood charcoal throughout the whole sequence of occupation. The Aurignacian horizons (early Upper Paleolithic, starting around 44,200 calibrated years before present (cal yr BP) correlate with prevailing shrub tundra. Few arboreal pollen in the transitional section from the Aurignacian to the Gravettian horizons (middle Upper Paleolithic, until ca. 32 cal yr BP) supports the model of an interglacial tundra with a mosaic of cold steppe elements and some patches of woody species. In the Gravettian, the macrobotanical and the palynological records indicate colder climatic conditions and a generally reduced presence of wood patches. Few seed remains, mostly of the Asteraceae and Poaceae families suggesting the use of these plants. The collection of bearberry (Arctostaphylos sp.) for specific purposes is indicated by large amounts of bark fragments.


Upper Paleolithic Central Europe Pollen Plant macrofossils Phytoliths 



We thank Cornelia Dilger (Department of Botany, University of Tübingen) for access to the herbarium, Bärbel Albrecht for palynological preparation and identification, and Dr. Alexandra Golyeva (Institute of Geography, Russian Academy of Sciences, Moscow) for conducting phytolith analysis. We also wish to thank Dr. Ernestina Badal-García and an anonymous reviewer for helpful comments on our manuscript.


  1. Asouti E, Austin P (2005) Reconstructing woodland vegetation and its exploitation by past societies, based on the analysis and interpretation of archaeological wood charcoal macro-remains. Environ Archaeol 10:1–18CrossRefGoogle Scholar
  2. Behre K-E (1989) Biostratigraphy of the last glacial period in Europe. Quat Sci Rev 8:25–44CrossRefGoogle Scholar
  3. Behre K-E, van der Plicht J (1992) Towards an absolute chronology for the last glacial period in Europe: radiocarbon dates from Oerel, northern Germany. Veg Hist Archaeobot 1:111–117CrossRefGoogle Scholar
  4. Bottema S (1975) The interpretation of pollen spectra from prehistoric settlements (with special attention to Liguliflorae). Palaeohistoria 17:17–35Google Scholar
  5. Bryant VM (1969) Pollen analysis of prehistoric human feces from Mammoth Cave. Archeology of the Mammoth Cave Area. Academic press INC, San FranciscoGoogle Scholar
  6. Carrion JS, Munuera M, Navarro C, Burjachs F, Dupre M, Walker MJ (1999) The palaeoecological potential of pollen records in caves: the case of Mediterranean Spain. Quat Sci Rev 18:1061–1073CrossRefGoogle Scholar
  7. Carrion JS, Riquelme JA, Navarro C, Munuera M (2001) Pollen in hyaena coprolites reflects late glacial landscape in southern Spain. Palaeogeogr Palaeocl 176:193–205CrossRefGoogle Scholar
  8. Chabal L (1990) l´etude paléo-ecologique de sites protohistoriques à partir des charbons de bois: la question de l´unité de mesure. Dénombrement de fragments ou pesées? In: Hackens T, Munaut AV, Till Cl. (ed.) Wood and archaeology. Bois et archéologique. First European Conference, Louvain-la-Neuve, October 2nd-3rd 1987, Pact 22, 189–205Google Scholar
  9. Chabal L (1992) La représentativité paléo-écologique des charbons de bois archéologiques issus du bois du feu. Bull Soc Bot 139:213–236Google Scholar
  10. Conard NJ (2003) Paleolithic ivory sculptures from southwestern Germany and the origins of figurative art. Nature (London) 426:830–832CrossRefGoogle Scholar
  11. Conard NJ (2009) A female figurine from the basal Aurignacian of Hohle Fels Cave in southwestern Germany. Nature (London) 459:248–252CrossRefGoogle Scholar
  12. Conard NJ (2011) The demise of the Neanderthal cultural niche and the beginning of the Upper Paleolithic in southwestern Germany. In: Conard NJ (ed) Neanderthal lifeways, subsistence and technology: one hundred fifty years of Neanderthal study. Kerns Verlag, Tübingen, pp 223–240CrossRefGoogle Scholar
  13. Conard NJ, Bolus M (2003) Radiocarbon dating the appearance of modern humans and timing of cultural innovations in Europe: new results and new challenges. J Hum Evol 44:331–337CrossRefGoogle Scholar
  14. Conard NJ, Bolus M (2008) Radiocarbon dating the late Middle Paleolithic and the Aurignacian of the Swabian Jura. J Hum Evol 55:886–897CrossRefGoogle Scholar
  15. Conard NJ, Bolus M, Münzel SC (2012) Middle Paleolithic land use, spatial organization and settlement intensity in the Swabian Jura, southwestern Germany. Quatern Int 247:236–245CrossRefGoogle Scholar
  16. Conard NJ, Floss H (2000) Eine Elfenbeinplastik vom Hohle Fels bei Schelklingen und ihre Bedeutung für die Entwicklung des Jungpaläolithikums in Südwestdeutschland. A KorrBl 30:473–480Google Scholar
  17. Conard NJ, Langguth K, Uerpmann H-P (2001) Die Grabungen in den Gravettienschichten des Hohle Fels bei Schelklingen, Alb-Donau-Kreis. A Ausgr Bad Würt 2001:18–22Google Scholar
  18. Conard NJ, Langguth K, Uerpmann H-P (2003) Einmalige Funde aus dem Aurignacien und erste Belege für ein Mittelpaläolithikum im Hohle Fels bei Schelklingen, Alb-Donau-Kreis. Ausgr Bad Würt 2003:21–27Google Scholar
  19. Conard NJ, Malina M (2006) Neue Ergebnisse zum Mittelpaläolithikum, zum Aurignacien und zu den letzten Neandertalern am Hohle Fels bei Schelklingen, Alb-Donau-Kreis. A Ausgr Bad Würt 2006:17–20Google Scholar
  20. Conard NJ, Malina M (2011) Neue Eiszeitkunst und weitere Erkenntnisse über das Magdalénien vom Hohle Fels bei Schelklingen. A Ausgr Bad Würt 2011:56–60Google Scholar
  21. Conard NJ, Malina M (2012) Neue Forschungen in den Magdalénien-schichten des Hohle fels bei Schelklingen. A Ausgr Bad Würt 2012:56–60Google Scholar
  22. Cordain L, Brand Miller J, Eaton SB, Mann N, Holt SHA, Speth JD (2000) Plant-animal subsistence ratios and macronutrient energy estimations in worldwide hunter-gatherer diets. Am J Clin Nutr 71:682–692Google Scholar
  23. Damblon F, Haesaerts P (2002) Anthracology and radiochronology of the Upper Pleistocene in the loessic areas of Eurasia. In: Thiébault S (ed) Charcoal analysis, vol 1063, Methodological approaches, palaeoecological results and wood uses. BAR Int. Series., pp 65–71Google Scholar
  24. Davis OK, Mead JI, Martin PS, Agenbroad LD (1985) Riparian plants were a major component of the diet of mammoths of Southern Utah. Curr Res Pleistocene 2:81–82Google Scholar
  25. Faegri K, Iversen JI, Kaland PE, Krzywinski K (1989) Textbook of pollen analysis, 4th edn. Wiley & Sons, ChichesterGoogle Scholar
  26. Fletcher WJ, Sánchez Goñi MF, Allen JRM, Cheddadi R, Combourieu-Nebout N, Huntley B, Lawson I, Londeix L, Magri D, Margari V, Müller UC, Naughton F, Novenko E, Roucoux K, Tzedakis PC (2010) Millennial-scale variability during the last glacial in vegetation records from Europe. Quat Sci Rev 29:2839–2864CrossRefGoogle Scholar
  27. Frenzel B (1983) Die Vegetationsgeschichte Süddeutschlands im Eiszeitalter. In: Müller-Beck H (ed) Urgeschichte in Baden-Württemberg. Konrad Theiss Verlag, Stuttgart, pp 91–166Google Scholar
  28. Gale R, Cutler D (2000) Plants in archaeology. Identification manual of vegetative plant materials used in Europe and the southern Mediterranean to c. 1500. Westbury and Royal Botanic Gardens, KewGoogle Scholar
  29. Gliemeroth AK (1995) Paläoökologische Untersuchungen über die letzten 22000 Jahre in Europa. Vegetation, Biomasse und Einwanderungsgeschichte der wichtigsten Waldbäume. Gustav Fischer Verlag, Stuttgart, Jena, New YorkGoogle Scholar
  30. Grimm E (2004) TGView ver. 2.0.2. Illinois State MuseumGoogle Scholar
  31. Guiot J, de Beaulieu JL, Cheddadi R, David F, Ponel P, Reille M (1993) The climate in western Europe during the last glacial/interglacial cycle derived from pollen and insect remains. Palaeogeogr Palaeocl 103:73–93CrossRefGoogle Scholar
  32. Habbe KA, Ellwanger D, Becker-Haumann R (2007) Stratigraphical terms for the quaternary of the south German alpine foreland. Quat Sci J 56:66–83Google Scholar
  33. Haesaerts P, Borziak I, Chirica V, Damblon F, Koulakovska L, Plicht JV (2003) The east Carpathian loess record: a reference for the middle and late pleniglacial stratigraphy in central Europe. Quaternaire 14:163–188CrossRefGoogle Scholar
  34. Hahn J (1988) Die Geißenklösterle-Höhle im Achtal bei Blaubeuren I. Konrad Theiss Verlag, StuttgartGoogle Scholar
  35. Hather JG (1991) The identification of charred archaeological remains of vegetative parenchymous tissue. J Archaeol Sci 18:661–676CrossRefGoogle Scholar
  36. Heuertz M, Teufel J, González-Martínez SC, Soto A, Fady B, Alía R, Vendramin GG (2010) Geography determines genetic relationships between species of mountain pine (Pinus mugo complex) in western Europe. J Biogeogr 37:541–556CrossRefGoogle Scholar
  37. Hillman GC (1989) Late palaeolithic plant foods from Wadi Kubbaniya in Upper Egypt: dietary diversity, infant weaning, and seasonality in a riverine environment. In: Harris DR, Hillman GC (eds) Foraging and farming. The evolution of plant exploitation. Unwin Hyman, London, pp 207–239Google Scholar
  38. Housley RA, Gamble C, Street M, Pettitt P (1997) Radiocarbon evidence for the late glacial human recolonisation of northern Europe. Proc Prehistoric Soc 63:25–54CrossRefGoogle Scholar
  39. Huijzer B, Vandenberghe J (1998) Climatic reconstruction of the Weichselian Pleniglacial in northwestern and central Europe. J Quaternary Sci 13:391–417CrossRefGoogle Scholar
  40. Huntley B, Alfano MJ, Allen JRM, Pollard D, Tzedakis PC, J-Ld B, Grüger E, Watts B (2003) European vegetation during Marine Oxygen Isotope Stage-3. Quat Res 59:195–212CrossRefGoogle Scholar
  41. Jensen HA (1998) Bibliography on seed morphology. A. A. Balkema, RotterdamGoogle Scholar
  42. Kershaw L, MacKinnon A, Pojar J (1998) Plants of the Rocky Mountains. Lone Pine Publishing, EdmontonGoogle Scholar
  43. Kreuz A (2008) Closed forests or open woodland as natural vegetation in the surroundings of Linearbandkeramik settlements? Veg Hist Archaeobot 17:51–64CrossRefGoogle Scholar
  44. Krönneck P (in press) Die Vogelknochen vom Geißenklösterle, in: Conard NJ, Bolus M, Münzel SC (Eds.), Geißenklösterle II. Fauna, Flora und Umweltverhältnisse im Mittel- und Jungpaläolithikum, TübingenGoogle Scholar
  45. Kühn I, Klotz S, Durka W (2002) BIOLFLOR - Eine Datenbank mit biologisch-ökologischen Merkmalen zur Flora von Deutschland, BonnGoogle Scholar
  46. Küttel M, Löscher M, Hölzer A (1986) Ergebnisse paläobotanischer Untersuchungen zur Stratigraphie und Ökologie des Würms im Oberrheingraben zwischen Karlsruhe und Mannheim. Eiszeit Gegenw 36:75–88Google Scholar
  47. Lang G (1994) Quartäre Vegetationsgeschichte Europas. Methoden und Ergebnisse. Gustav Fischer Verlag, JenaGoogle Scholar
  48. Lepofsky D (2002) Plants and pithouses: archaeobotany and site formation processes at the Keatley Creek village site. In: Mason SLR (ed) Hunter-gatherers archaeobotany. Perspectives from the northern temperate zone. Institute of Archaeology UCL, London, pp 44–61Google Scholar
  49. Mason SLR (2002) Hunter-gatherers archaeobotany. Perspectives from the northern temperate zone. Institute of Archaeology UCL, LondonGoogle Scholar
  50. Mason SLR, Hather JG, Hillman GC (1994) Preliminary investigation of the plant macro-remains from Dolni Vestonice II, and its implications for the role of plant foods in Palaeolithic and Mesolithic Europe. Antiquity 68:48–57Google Scholar
  51. Mead JI, Agenbroad LD, Davis OK, Martin PS (1986) Dung of Mammuthus in the arid Southwest, North America. Quat Res 25:121–127CrossRefGoogle Scholar
  52. Mercuri AM (2008) Human influence, plant landscape evolution and climate inferences from the archaeobotanical records of the Wadi Teshuinat area (Libyan Sahara). J Arid Environ 72:1950–1967CrossRefGoogle Scholar
  53. Miller C (2009) Formation processes, palaeoenvironments, and settlement dynamics at the Palaeolithic cave sites of Hohle Fels and Geißenklösterle: a geoarchaeological and micromorphological perspective. Geosciences Faculty. University of Tübingen, Tübingen, p 232Google Scholar
  54. Moore AMT, Hillman GC, Legge AJ (2000) Village on the Euphrates: from foraging to farming at Abu Hureyra. Oxford University Press, New YorkGoogle Scholar
  55. Moore PD, Webb JA, Collinson ME (1991) Pollen analysis. Blackwells, LondonGoogle Scholar
  56. Müller E (1979) Pollenanalytische Untersuchungen an paläolithischen und mesolithischen Höhlensedimenten aus der Schweiz und dem Vorarlberg. Verlag Schweizerische Gesellschaft für Ur- und Frühgeschichte, BaselGoogle Scholar
  57. Müller UC, Pross J, Bibus E (2003) Vegetation response to rapid climate change in Central Europe during the past 140.000 yr based on evidence from the Füramoos pollen record. Quaternary Res 59Google Scholar
  58. Münzel SC (2001) Seasonal hunting of mammoth in the Ach-Valley of the Swabian Jura. In: Cavarretta G, Gioia P, Mussi M, Palombo MR (eds) The world of elephants. Proceedings of the first international congress. Consiglio Nazionale delle Ricerche, Rome, pp 318–332Google Scholar
  59. Münzel SC, Conard NJ (2004) Change and continuity in subsistence during the Middle and Upper Palaeolithic in the Ach Valley of Swabia (South-west Germany). Int J Osteoarchaeol 14:225–243CrossRefGoogle Scholar
  60. Navarro C, Carrión JS, Munuera M, Prieto AR (2001) Cave surface pollen and the palynological potential of karstic cave sediments in palaeoecology. Rev Palaeobot Palyno 117:245–265CrossRefGoogle Scholar
  61. Navarro C, Carrión JS, Navarro J, Munuera M, Prieto AR (2000) An experimental approach to the palynology of cave deposits. J Quaternary Sci 15:603–619CrossRefGoogle Scholar
  62. North Greenland Ice Core Project members (2004) North Greenland Ice Core Project Oxygen Isotope Data. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series # 2004–059. NOAA/NGDC Paleoclimatology Program, Boulder CO, USAGoogle Scholar
  63. Owen LR (1996) Der Gebrauch von Pflanzen im Jungpaläolithikum Mitteleuropas. Ethnographisch - Archäologische Zeitschrift 37:119–146Google Scholar
  64. Peacock SL (2002) Persuing the pits: the evidence for prehistoric root resource processing on the Canadian Plateau. In: Mason SLR (ed) Hunter-gatherers archaeobotany. Perspectives from the northern temperate zone. Institute of Archaeology UCL, London, pp 44–61Google Scholar
  65. Pons A (1969) Les macroflores quaternaires de France. Etudes françaises sur le Quaternaire. Supplément au Bulletin de l'Association française pour l'Étude du QuaternaireGoogle Scholar
  66. Rau S, Naumann D, Barth M (2009) Eiszeit: Kunst und Kultur. Thorbecke, OstfildernGoogle Scholar
  67. Schiegl S, Goldberg P, Pfretzschner H-U, Conard NJ (2003) Paleolithic burnt bone horizons from the Swabian Jura: distinguishing between in situ fireplaces and dumping areas. Geoarchaeology 18:541–565CrossRefGoogle Scholar
  68. Schweingruber FH (1990) Anatomie europäischer Hölzer. Ein Atlas zur Bestimmung europäischer Baum-, Strauch- und Zwergstrauchhölzer. Paul Haupt, Bern und StuttgartGoogle Scholar
  69. Šibík J, Dítě D, Šibíková I, Pukajová D (2008) Plant communities dominated by Pinus mugo agg. in Central Europe comparison of the oligotrophic communities rich in sphagnum. Phytocoenologia 38:221–238CrossRefGoogle Scholar
  70. Sirocko F (2009) Wetter, Klima, Menschheitsentwicklung von der Eiszeit bis ins 21. Jahrhundert. Wissenschaftliche Buchgesellschaft, Darmstadt, p 208Google Scholar
  71. Tarasov PE, Volkova VS, Webb I, Andreev AA, Bezusko LG, Bezusko TV, Bykova GV, Dorofeyuk NI, Kvavadze EV, Osipova IM, Panova NK, Sevastyanov DV (2000) Last glacial maximum biomes reconstructed from pollen and plant macrofossil data from northern Eurasia. J Biogeogr 27:609–620CrossRefGoogle Scholar
  72. Van Meerbeeck CJ, Renssen H, Roche DM (2008) How did Marine Isotope Stage 3 and Last Glacial Maximum climates differ? Perspectives from equilibrium simulations. Clim Past Discuss 4:1115–1158CrossRefGoogle Scholar
  73. Van Meerbeeck CJ, Renssen H, Roche DM, Wohlfarth B, Bohncke SJP, Bos JAA, Engels S, Helmens KF, Sanchez-Goni MF, Svensson A, Vandenberghe J (2011) The nature of MIS 3 stadial-interstadial transitions in Europe: new insights from model-data comparisons. Quaternary Sci Rev 30:3618–3637CrossRefGoogle Scholar
  74. Wagner E (1979) Eiszeitjäger im Blaubeurener Tal. Konrad Theiss Verlag, StuttgartGoogle Scholar
  75. Westing AH (1965) Formation and function of compression wood in gymnosperms. Bot Rev 31:381–480CrossRefGoogle Scholar
  76. Wohlfahrt B, Veres D, Ampel L, Lacourse T, Blaauw M, Preusser F, Andrieu-Ponel V, Kéravis D, Lallier-Vergès E, Björk S, Davies S, de Beaulieu JL, Risberg J, Hormes A, Kasper HU, Possnert G, Reille M, Thouveny N, Zander A (2008) Rapid ecosystem response to abrupt climate changes during the glacial period in Western Europe, 40–16 kyr BP. Geology 36:407–410CrossRefGoogle Scholar
  77. Woillard GM (1978) Grande Pile peat bog: a continuous pollen record for the last 140,000 years. Quat Res 9:1–21CrossRefGoogle Scholar
  78. Ziegler R (in press) Die Kleinsäugerfauna, in: Conard NJ, Bolus M, Münzel SC (Eds.), Geißenklösterle II. Fauna, Flora und Umweltverhältnisse im Mittel- und Jungpaläolithikum, TübingenGoogle Scholar
  79. Zvelebil M, Rowley-Conwy P (1984) Transition to farming in northern Europe. A hunter-gatherer perspective. Nor Archaeol Rev 17:104–128CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Simone Riehl
    • 1
    • 3
  • Elena Marinova
    • 2
    • 6
  • Katleen Deckers
    • 3
  • Maria Malina
    • 4
  • Nicholas J. Conard
    • 1
    • 5
  1. 1.Senckenberg Center of Human Evolution and PalaeoecologyUniversity of TübingenTübingenGermany
  2. 2.Center for Archaeological SciencesKatholieke Universiteit LeuvenLeuvenBelgium
  3. 3.Institut für Naturwissenschaftliche ArchäologieUniversity of TübingenTübingenGermany
  4. 4.Heidelberg Academy of Sciences and HumanitiesUniversity of TübingenTübingenGermany
  5. 5.Institut für ältere UrgeschichteUniversity of TübingenTübingenGermany
  6. 6.Department PalaeontologyRoyal Belgian Institute for Natural SciencesBrusselsBelgium

Personalised recommendations