Advertisement

Archaeological and Anthropological Sciences

, Volume 6, Issue 3, pp 241–254 | Cite as

Iron isotope analysis of red and black pigments on pottery in Nasca, Peru

  • Jelmer W. Eerkens
  • Gry H. Barfod
  • Kevin J. Vaughn
  • P. Ryan Williams
  • Charles E. Lesher
Original Paper

Abstract

The Nasca culture of the south coast of Peru developed during the first millennium ad and is known internationally for its elaborately decorated polychrome pots. Despite decades of iconographic analysis, little is known about the more technological aspects of Nasca pigment production and application. We present results from a pilot study on iron isotopes as a potential line of inquiry into the differences between red and black pigments in Nasca pigments. As well, we conduct a small firing experiment to examine potential changes in isotope composition. Our analyses show three significant results. First, firing does not change the isotopic ratios of Fe in pigments. Second, red and black pigments show differences in their iron isotope composition, which relate to differences in the minerals used to make the different colors. Third, naturally available hematite samples show greater isotopic variation than pigment samples, suggesting that people selected a limited range of iron oxides to produce pigments.

Keywords

Isotope analysis Nasca Hematite Red and black pigments Iron oxides 

Notes

Acknowledgments

We thank Moises Linares-Grados for assistance in collecting samples, Eddie Willis and Randy Southard for undertaking XRD analyses, Sarah Roeske, Brian Joy, and Ashley Leslie for assistance with the electron microprobe work, and Justin Glessner for analytical assistance with the MC-ICPMS. We also thank Vincent Busigny, Harilaos Tsikos, and several anonymous reviewers for comments on earlier drafts. This research was partially supported by grants from the National Science Foundation (EAR 1019887) and the UC Davis ICPMS Exploratory Grant Program.

References

  1. Anbar AD, Roe JE, Barling J, Nealson KH (2000) Nonbiological fractionation of iron isotopes. Science 288:126–128CrossRefGoogle Scholar
  2. Beard BL, Johnson CM (2004) Fe isotope variations in the modern and ancient Earth and other planetary bodies. Reviews in Mineralogy & Geochemistry 55:319–357CrossRefGoogle Scholar
  3. Beard BL, Johnson CM (2003) High and low temperature applications of Fe isotope geochemistry. Geochemical News 117:8–13Google Scholar
  4. Beard BL, Johnson CM, Skulan JL, Nealson KH, Cox L, Sun H (2003) Application of Fe isotopes to tracing the geochemical and biological cycling of Fe. Chemical Geology 195:87–117CrossRefGoogle Scholar
  5. Belshaw NS, Zhu XK, Guo Y, O’Nions RK (2000) High precision measurement of iron isotopes by plasma source mass spectrometry. International Journal of Mass Spectrometry 197:191–195CrossRefGoogle Scholar
  6. Berthelot J (1986) The extraction of precious metals at the time of the Inka. In: Murra J, Wachtel N, Revel J (eds) Anthropological history of Andean politics. Cambridge University Press, Cambridge, pp 69–88CrossRefGoogle Scholar
  7. Bonavia D (1959) Una pintura mural de Pañamarca, Valle de Nepeña. Arqueológicas 5, Publicación del Instituto de Investigaciones Antropológicas, Museo Nascional de Antropología y Arqueología, LimaGoogle Scholar
  8. Bonavia D (1985) Mural painting in ancient Peru. University of Indiana Press, BloomingtonGoogle Scholar
  9. Bullen TD, White AF, Childs CW, Vivit DV, Schulz MS (2001) Demonstration of significant abiotic iron isotope fractionation in nature. Geology 29:699–702CrossRefGoogle Scholar
  10. Burger RL, Matos Mendieta R (2002) Atalla: a center on the periphery of the Chavín Horizon. Latin American Antiquity 13:153–177CrossRefGoogle Scholar
  11. Busigny V, Dauphas N (2007) Tracing paleofluid circulations using iron isotopes: a study of hematite and goethite concretions from the Navajo Sandstone (Utah, USA). Earth and Planetary Science Letters 254:272–287CrossRefGoogle Scholar
  12. Cantarutti GE (2013) Mining under Inca rule in north-central Chile: the Los Infieles mining complex. In: Tripcevich N, Vaughn KJ (eds) Mining and quarrying in the ancient Andes: sociopolitical, economic and symbolic dimensions. Springer, New York, pp 185–211CrossRefGoogle Scholar
  13. Carmichael PH (1998) Nasca ceramics: production and social context. In Andean ceramics: technology, organization, and approaches (ed. I. Shimada), 213–231. University of Pennsylvania Museum of Archaeology and AnthropologyGoogle Scholar
  14. Chan MA, Johnson CM, Beard BL, Bowman JR, Parry WT (2006) Iron isotopes constrain the pathways and formation mechanisms of terrestrial oxide concretions: a tool for tracing iron cycling on Mars? Geosphere 2:324–332CrossRefGoogle Scholar
  15. Craddock PR, Dauphas N (2011) Iron isotopic compositions of geological reference materials and chondrites. Geostandards and Geoanalytical Research 35:101–123CrossRefGoogle Scholar
  16. Cui J, Wu X (2011) An experimental investigation on lead isotopic fractionation during metallurgical processes. Archaeometry 53:205–214CrossRefGoogle Scholar
  17. Dauphas N, Janney PE, Mendybaev RA, Wadhwa M, Richter FM, Davis AM, van Zuilen M, Hines R, Foley CN (2004) Chromatographic separation and multicollection-ICPMS analysis of iron. Investigating mass-dependent and independent isotope effects. Analytical Chemistry 76:5855–5863CrossRefGoogle Scholar
  18. Dauphas N, Pourmand A, Teng FZ (2009) Routine isotopic analysis of iron by HR-MC-ICMS: how precise and how accurate? Chemical Geology 267:175–184CrossRefGoogle Scholar
  19. Dauphas N, Rouxel O (2006) Mass spectrometry and natural variations of iron isotopes. Mass Spectrometry Reviews 25:515–550CrossRefGoogle Scholar
  20. Degryse P, Schneider JC, Muchez P (2009) Combined Pb-Sr isotopic analysis in provenancing late Roman iron raw materials in the territory of Sagalassos (SW Turkey). Archaeological and Anthropological Sciences 1:155–159CrossRefGoogle Scholar
  21. Eastaugh N, Walsh V, Chaplin T, Siddall R (2008) Pigment compendium: a dictionary and optical microscopy of historic pigments. Routledge, LondonGoogle Scholar
  22. Eerkens JW, Vaughn KJ, Linares Grados M (2009) Pre-Inca mining in the Southern Nasca Region. Peru, Antiquity 83:738–750Google Scholar
  23. Eitel B, Machtle B (2009) Man and environment in the eastern Atacama Desert (southern Peru): Holocene climate changes and their impact on pre-Columbian cultures. In: Reindel M, Wagner GA (eds) New technologies for archaeology: multidisciplinary investigations in Palpa and Nasca, Peru. Springer, Berlin, pp 17–37CrossRefGoogle Scholar
  24. Erlandson JM, Robertson JD, Descantes C (1999) Geochemical analysis of eight red ochres from Western North America. American Antiquity 64:517–526CrossRefGoogle Scholar
  25. Gale NH, Stos-Gale ZA (1982) Bronze Age copper sources in the Mediterranean: a new approach. Science 216:11–19CrossRefGoogle Scholar
  26. Gale NH, Woodhead AP, Stos-Gale ZA, Walder A, Bowen I (1999) Natural variations detected in the isotopic composition of copper: possible applications to archaeology and geochemistry. International Journal of Mass Spectrometry 184:1–9CrossRefGoogle Scholar
  27. Gullapalli P (2009) Early metal in South India: copper and iron in megalithic contexts. Journal of World Prehistory 22:439–459CrossRefGoogle Scholar
  28. Habicht-Mauche JA, Glenn ST, Milford H, Flegal AR (2000) Isotopic tracing of prehistoric Rio Grande glaze-paint production and trade. Journal of Archaeological Science 27:709–713CrossRefGoogle Scholar
  29. Haustein M, Gillis C, Pernicka E (2010) Tin isotopy—a new method for solving old questions. Archaeometry 52:816–832CrossRefGoogle Scholar
  30. Henshilwood CS, d’Errico F, van Niekerk KL, Coquinot Y, Jacobs Z, Lauritzen S, Menu M, García-Moreno R (2011) A 100,000-year-old ochre processing workshop at Blombos Cave, South Africa. Science 334:219–222CrossRefGoogle Scholar
  31. Holl AFC (2009) Early West African metallurgies: new data and old orthodoxy. Journal of World Prehistory 22:415–438CrossRefGoogle Scholar
  32. Johnson CM, Beard BL (2006) Fe isotopes: an emerging technique for understanding modern and ancient biogeochemical cycles. GSA Today 16:4–10CrossRefGoogle Scholar
  33. Johnson CM, Bell K, Beard BL, Shultis AI (2010) Iron isotope compositions of carbonatites record melt generation, crystallization, and late-stage volatile-transport processes. Mineralogy and Petrology 98:91–110CrossRefGoogle Scholar
  34. Kiehn AV, Brook GA, Glascock MD, Dake JZ, Robbins LH, Campbell AC, and Murphy ML (2007) Fingerprinting specular hematite from mines in Botswana, Southern Africa. In: M. D. Glascock, R. J. Speakman, and R. S. Popelka-Filcoff (eds) Archaeological chemistry: analytical techniques and archaeological interpretation, ACS Symposium Series No. 968, Oxford University Press, pp. 460–479Google Scholar
  35. Klein S, Brey GP, Durali-Müller S, Lahaye Y (2010) Characterisation of the raw metal sources used for the production of copper and copper based objects with copper isotopes. Archaeological and Anthropological Sciences 2:45–56CrossRefGoogle Scholar
  36. Kroeber AL, Collier D (1998) The archaeology and pottery of Nazca. Altamira Press, Walnut CreekGoogle Scholar
  37. Lechtman HN (1976) A metallurgical site survey in the Peruvian Andes. Journal of Field Archaeology 3:1–42CrossRefGoogle Scholar
  38. Lesher CE, Lundstrom C, Brown EL, Huang F, Glessner JJ, Barfod GH, and Thy P (2009) Iron isotopes for the layered series of the Skaergaard intrusion, EOS Transactions, American Geophysical Union, 90(52), Fall Meeting Supplement, Abstracts, V21A-1953Google Scholar
  39. Llagostera A, Weisner R, Castillo G, Cervellino M, Costa MA (2000) El Complejo Huentelauquén bajo una perspectiva macroespacial y multidisciplinaria. Contribución Arqueológica 5:461–480Google Scholar
  40. Mackay A, Welz A (2008) Engraved ochre from a Middle Stone Age context at Klein Kliphuis in the Western Cape of South Africa. Journal of Archaeological Science 35:1521–1532CrossRefGoogle Scholar
  41. Makl G, von Blanckenburg F, Wagner T (2006) Iron isotope fractionation during hydrothermal ore deposition and alteration. Geochimica et Cosmochimica Acta 70:3011–3030CrossRefGoogle Scholar
  42. Marean CW, Bar-Matthews M, Bernatchez J, Fisher E, Goldberg P, Herries AIR, Jacobs Z, Jerardino A, Karkanas P, Minichillo T, Nilssen PJ, Thompson E, Watts I, Williams HM (2007) Early human use of marine resources and pigment in South Africa during the Middle Pleistocene. Nature 449:905–908CrossRefGoogle Scholar
  43. Montoya M, García W, Caidas J (1994) Geología de los Cuadrangulos de Lomitas, Palpa, Nasca y Puquio. Instituto Geologico Minero y Metalurgico, LimaGoogle Scholar
  44. Mooney SD, Geiss C, Smith MA (2003) The use of mineral magnetic parameters to characterize archaeological ochres. Journal of Archaeological Science 30:511–523CrossRefGoogle Scholar
  45. Nielsen S, Andersen JH, Baker JA, Christensen C, Glastrup J, Grootes PM, Hüls M, Jouttijärvi A, Larsen EB, Madsen HB, Müller K, Nadeau M, Röhrs S, Stege H, Stos ZA, Waight TE (2005) The Gundestrup cauldron: new scientific and technical investigations. Acta Archaeologica 76:1–58CrossRefGoogle Scholar
  46. Petersen G (2010) Mining and metallurgy in ancient Perú, translated by W. E. Brooks, Special Paper 467, The Geological Society of American, Boulder, COGoogle Scholar
  47. Phipps EJS (1989) Cahuachi textiles in the W. D. Strong collection: cultural transition in the Nasca Valley, Peru, Unpublished Ph.D. dissertation, Department of Art History, Columbia UniversityGoogle Scholar
  48. Popelka-Filcoff RS, Miksa EJ, Robertson JD, Glascock MD, Wallace H (2008) Elemental analysis and characterization of ochre sources from southern Arizona. Journal of Archaeological Science 35:752–762CrossRefGoogle Scholar
  49. Popelka-Filcoff RS, Robertson JD, Glascock MD, Descrantes C (2007) Trace element characterization of ochre from geological sources. Journal of Radioanalytical and Nuclear Chemistry 272:17–27CrossRefGoogle Scholar
  50. Richter FM, Watson EB, Mendybaev RA, Dauphas N, Georg RB, Watkins J, Valley JW (2009) Isotopic fractionation of the major elements of molten basalt by chemical and thermal diffusion. Geochimica et Cosmochimica Acta 73:4250–4263CrossRefGoogle Scholar
  51. Salazar D, Salinas H (2008) Tradición y transofrmaciones en la organización de los sistemas productivos mineros en el norte de Chile prehispánico: San José del Abra, Siglos I al XV d.C. In: Cruz P, Vacher JJ (eds) Mina y Metalurgia en los Andes del Sur Desde la Epoca Prehispánica Hasta el Siglo XVII. Instituto Francés de Estudios Andinos, Sucre, pp 163–200Google Scholar
  52. Salazar D, Salinas H, McRostie V, Labarca R, Vega G (2010) Cerro Turquesa: diez siglos de producción minera en el extremo norte de Chile. Actas del XVII Congreso Nacional de Arqueología Chilena, Valdivia 2:1085–1097Google Scholar
  53. Salazar D, Jackson D, Guendon JL, Salinas H, Morata D, Figueroa V, Manríquez G, Castro V (2011) Early evidence (ca. 12,000 bp) for iron oxide mining on the Pacific coast of South America. Current Anthropology 52:463–475CrossRefGoogle Scholar
  54. Salinas H, Salazar D (2008) Cadenas operativas y sistemas de explotación minera prehispánica. In: Jackson D, Salazar D, Troncoso A (eds) Puentes Hacía el Pasado. Departamento de Antropología, Universidad de Chile, Santiago, pp 73–92Google Scholar
  55. Schoenberg R, von Blanckenburg F (2005) An assessment of the accuracy of stable Fe isotope ratio measurements on samples with organic and inorganic matrices by high resolution multicollector ICP-MS. International Journal of Mass Spectrometry 242:257–272CrossRefGoogle Scholar
  56. Schultze CA (2013) Silver mines of the northern Lake Titicaca basin. In: Tripcevich N, Vaughn KJ (eds) Mining and quarrying in the ancient Andes: sociopolitical, economic and symbolic dimensions. Springer, New York, pp 231–251CrossRefGoogle Scholar
  57. Schweizer F, Rinuy A (1982) Manganese black as an Etruscan pigment. Studies in Conservation 27:118–123CrossRefGoogle Scholar
  58. Scott DA, Doughty DA, Donnan CB (1998) Moche wall painting pigments from La Mina, Jequetepeque, Peru. Studies in Conservation 43:177–182CrossRefGoogle Scholar
  59. Shimada I (1994) Pre-Hispanic metallurgy and mining in the Andes: recent advances and future tasks. In: A. Craig and R. West (eds) In quest of mineral wealth: aboriginal and colonial mining and metallurgy in Spanish America. Louisiana State University Series: Geoscience and Man, vol. 33, Geoscience Publications, Baton Rouge, pp. 37–73Google Scholar
  60. Silverman H (1993) Cahuachi in the ancient Nasca world. University of Iowa Press, Iowa CityGoogle Scholar
  61. Smith MA, Pell S (1997) Oxygen-isotope ratios in quartz as indicators of the provenance of archaeological ochres. Journal of Archaeological Science 24:773–778CrossRefGoogle Scholar
  62. Stöllner T (2009) Gold in southern Peru? Perspectives of research into mining archaeology. In: Reindel M, Wagner GA (eds) New technologies for archaeology: multidisciplinary investigations in Palpa and Nasca, Peru. Springer, Berlin, pp 393–407CrossRefGoogle Scholar
  63. Stos-Gale ZA, Gale NH (2009) Metal provenancing using isotopes and the Oxford archaeological lead isotope database (OXALID). Archaeological and Anthropological Sciences 1:195–213CrossRefGoogle Scholar
  64. Tripcevich N, Vaughn KJ (eds) (2013) Mining and quarrying in the ancient Andes: sociopolitical, economic and symbolic dimensions. Springer, New YorkGoogle Scholar
  65. Vaughn KJ, Conlee CA, Neff H, Schreiber K (2005) A compositional analysis of Nasca pigments: implications for craft production on the prehispanic South Coast of Peru. In: Speakman RJ, Neff H (eds) Laser ablation ICP-MS: a new frontier in archaeological characterization studies. University of New Mexico Press, Albuquerque, pp 138–154Google Scholar
  66. Vaughn KJ, Conlee CA, Neff H, Schreiber K (2006) Ceramic production in ancient Nasca: provenance analysis of pottery from the Early Nasca and Tiza cultures through INAA. Journal of Archaeological Science 33:681–689CrossRefGoogle Scholar
  67. Vaughn KJ, Eerkens JW, Linares Grados M, Edwards MJ (2007) Hematite mining in the ancient Americas: Mina Primavera, a 2,000 year old Peruvian mine. JOM 59:21–25CrossRefGoogle Scholar
  68. Vaughn KJ, Neff H (2004) Tracing the clay source of Nasca polychrome pottery: results from a preliminary raw material survey. Journal of Archaeological Science 31:1577–1586CrossRefGoogle Scholar
  69. Vaughn KJ, Van Gijseghem H (2007) A compositional perspective on the origins of the Nasca cult. Journal of Archaeological Science 34:814–822CrossRefGoogle Scholar
  70. Vaughn, K. J., Van Gijseghem, H., Eerkens, J. W., Linares Grados, M. (2010) Two millennia of prehispanic mining in Nasca, Peru. Paper presented at the Primera Reunión Internacional sobre Minería Prehispánica en América, Taltal-San Pedro de Atacama, ChileGoogle Scholar
  71. Vaughn KJ, Van Gijseghem H, Grados ML, Eerkens JW (2013) Minería de Hematita en la Costa Sur del Perú: Investigaciones Arqueológicas en la Mina Primavera. Chungará, Revista de Antropología Chilena 45:131–142Google Scholar
  72. Weigand PC, Harbottle G, Sayre EV (1977) Turquoise sources and source analysis: Mesoamerica and the southwestern USA. In: Earle TK, JE E (eds) Exchange systems in prehistory. Academic Press, New York, pp 15–34CrossRefGoogle Scholar
  73. Weinstein-Evron M, Ilani S (1994) Provenance of ochre in the Natufian layers of el-Wad Cave Mount Carmel, Israel. Journal of Archaeological Science 21:461–467CrossRefGoogle Scholar
  74. Wells PS (1990) Iron Age temperate Europe: some current research issues. Journal of World Prehistory 4:437–476CrossRefGoogle Scholar
  75. Wilson L, Pollard AM (2001) The provenance hypothesis. In: Brothwell DR, Pollard AM (eds) Handbook of archaeological sciences. Wiley, Chichester, pp 507–517Google Scholar
  76. Yacovleff E, Muelle JC (1934) Notas al trabajo colorantes de Paracas. Revista del Museo Nacional 3:154–168Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jelmer W. Eerkens
    • 1
  • Gry H. Barfod
    • 2
  • Kevin J. Vaughn
    • 3
  • P. Ryan Williams
    • 4
  • Charles E. Lesher
    • 2
  1. 1.Department of AnthropologyUC DavisDavisUSA
  2. 2.Department of GeologyUC DavisDavisUSA
  3. 3.Department of AnthropologyPurdue UniversityWest LafayetteUSA
  4. 4.Department of Anthropology, The Field Museum of Natural HistoryChicagoUSA

Personalised recommendations