Advertisement

Determination of the influence of soil parameters and sample density on ground-penetrating radar: a case study of a Roman picket in Lower Bavaria

  • Roland LinckEmail author
  • Jorg W. E. Fassbinder
Original Paper

Abstract

Ground-penetrating radar (GPR) surveys are very much influenced by the site-specific physical properties, soil parameters and the sample density of the radar pulses. According to the electromagnetic theory, the transmission and reflection of electromagnetic waves is dominated by the conductivity, dielectric permittivity and the soil moisture. Therefore, it is advisable to measure these parameters in advance of a GPR survey. Commonly, this is not possible directly with the standard common-offset GPR arrays. To overcome this problem, we adapted and applied a direct method called time-domain reflectometry to a selected case study of the Roman picket Hienheim at the Raetischer Limes in Lower Bavaria. Furthermore, we present some important results relating to the profile spacing and orientation of GPR surveys and the site-specific soil parameters. The location and the identification of the archaeological features were successful by all geophysical methods. However, the application of all these geophysical methods like magnetometry, resistivity and GPR in addition with aerial photography and Airborne Laserscanning exemplifies the advantages of an integrated survey to achieve a comprehensive result of an archaeological site. The Roman picket of Hienheim shows up differently in all results, as each one traces the archaeological remains according to a specific physical parameter. Resistivity and radar are best to resolve buried stone structures like the walls of the picket or stone-filled ditches. In contrary, magnetometry benefits of the magnetic contrast between the limestone walls and the surrounding soil.

Keywords

Ground-penetrating radar Time-domain reflectometry Magnetometry Resistivity Roman Limes Bavaria 

References

  1. Alharthi A, Lange J (1987) Soil water saturation: dielectric determination. Water Resour Res 23:591–595CrossRefGoogle Scholar
  2. Andrews JR (1994) Time domain reflectometry. Proc of the Symposium and Workshop on Time Domain Reflectometry in Environmental, Infrastructure and Mining Applications, 17. 19 September 1994, Evanston (USA), pp. 4–13Google Scholar
  3. Annan AP, Cosway S. (1992a) Ground penetrating radar survey design. Proc. of the Symposium on the Applications of Geophysics to Engineering and Environmental Problems SAGEEP’92, 26. 29 April 1992, Oakbrook (USA), pp. 329–351Google Scholar
  4. Annan AP, Cosway SW (1992b) Simplified GPR beam model for survey design. SEG Expend Abstr 11(356):356–359Google Scholar
  5. Ansoult M, De Backer LW, Declerq M (1985) Statistical relationship between apparent dielectric constant and water content in porous media. Soil Sci Soc of Am J 49:47–50CrossRefGoogle Scholar
  6. Baatz D (2007) Zur Funktion der Kleinkastelle am obergermanisch-raetischen Limes. In: Thiel A (ed) Forschungen zur Funktion des Limes. Beiträge zum Welterbe Limes, Vol. 2. Konrad Theiss Verlag, Stuttgart, pp 9-25Google Scholar
  7. Birchak JR, Gardner DG, Hipp JE, Victor JM (1974) High dielectric constant microwave probes for sensing soil moisture. Proc IEEE 63:93–98CrossRefGoogle Scholar
  8. Christlein R, Braasch O (1982) Das unterirdische Bayern. 7000 Jahre Geschichte und Archäologie im Luftbild. Konrad Theiss Verlag, Stuttgart, pp 230–231Google Scholar
  9. Conyers LB (2001) Ground penetrating radar. In: Hornak JP (ed) Encyclopedia of imaging science and technology. Wiley, Hoboken, pp 463–476Google Scholar
  10. Conyers LB (2004) Ground-penetrating radar for archaeology. AltaMira Press, LanhamGoogle Scholar
  11. Dalton FN, van Genuchten MT (1986) The time-domain reflectometry method for measuring soil water content and salinity. Geoderma 38:237–250CrossRefGoogle Scholar
  12. Dalton FN, Henkelrath WN, Rawlins DS, Rhoades JD (1984) Time-domain reflectometry: simultaneous measurement of soil water content and electrical conductivity with a single probe. Science 224:989–990CrossRefGoogle Scholar
  13. Daniels DJ (1996) Surface-penetrating radar. Radar, sonar, navigation and avionics, series 6. The Institution of Electrical Engineers, LondonGoogle Scholar
  14. Dasberg S, Hopmans JW (1992) Time domain reflectometry calibration for uniformly and nonuniformly wetted sandy and clayey loam soils. Soil Sci Soc of Am J 56:1341–1345CrossRefGoogle Scholar
  15. Dirksen C, Dasberg S (1993) Improved calibration of time domain reflectometry soil water content measurements. Soil Sci Soc of Am J 57:660–667CrossRefGoogle Scholar
  16. Dobson MC, Ulaby FT, Hallikainen MT, El-Rayes MA (1985) Microwave dielectric behaviour of wet soils. Part II: dielectric mixing models. IEEE Trans Geosci Remote Sens 23:35–46CrossRefGoogle Scholar
  17. European Soil Bureau Network (2005) Soil Atlas of Europe. Office for Official Publications of the European Communities, LuxemburgGoogle Scholar
  18. Fabricius E, Hettner F, von Sarvey O (1894-1937) Der obergermanisch Raetische Limes des Römerreichs. Verlag von Otto Petters, HeidelbergGoogle Scholar
  19. Fassbinder JWE (2008) Neue Ergebnisse der geophysikalischen Prospektion am Obergermanisch-Raetischen Limes. In: Thiel A (ed) Neue Forschungen am Limes. Beiträge zum Welterbe Limes, vol 3. Konrad Theiss Verlag, Stuttgart, pp 155–171Google Scholar
  20. Fassbinder JWE (2009) Geophysikalische Prospektionsmethoden - Chancen für das archäologische Erbe. In: Emmerling E (ed) Tocare - Non Tocare. ICOMOS, Hefte des Deutschen Nationalkomitees, vol 47. Siegl Verlag, München, pp 10–32Google Scholar
  21. Fassbinder JWE (2010) Neue Ergebnisse der geophysikalischen Prospektion in Bayern: Von Eining bis Ruffenhofen: Auf dem Weg zu einem Magnetogramm-Atlas der Raetischen Limeskastelle. In: Thiel A (ed) Neue Forschungen am Limes. Beiträge zum Welterbe Limes, vol 5. Konrad Theiss Verlag, Stuttgart, pp 88–103Google Scholar
  22. Fassbinder JWE, Gorka T (2009) Beneath the desert soil—archaeological prospecting with a ceasium magnetometer. In: Reindel M, Wagner GA (eds) New technologies for archaeology. Multidisciplinary investigations in Palpa and Nasca, Peru. Natural Science in Archaeology. Springer, Berlin, pp 49–69Google Scholar
  23. Fassbinder JWE, Berghausen K, Gorka T (2008) Geophysikalische Prospektion am raetischen Limes: Grenzbefestigung, Wachtürme und Feldwache. Das Archäologische Jahr in Bayern 2007:79–81Google Scholar
  24. Forkmann B (2006) Geschichte, Grundlagen und Zukunft des GPR. DGG-Kolloquium “Georadar”:3–22Google Scholar
  25. Friedman SP (1997) Statistical mixing model for the apparent dielectric constant of unsaturated porous media. Soil Sci Soc of Am J 61:742–745CrossRefGoogle Scholar
  26. Friedman SP (1998) A saturation degree-dependent composite spheres model for describing the effective dielectric constant of unsaturated porous media. Water Resour Res 34(11):2949–2961CrossRefGoogle Scholar
  27. Gaber A, Koch M, Helmi Griesh M, Sato M, El-Baz F (2012) Near-surface imaging of a buried foundation in the Western Desert, Egypt, using space-borne and ground penetrating radar. J Archaeol Sci. doi: 10.1016/j.jas.2012.12.019 Google Scholar
  28. Grasmueck M, Weger R, Horstmeyer H (2005) Full-resolution 3D GPR imaging. Geophysics 70:K12–K19CrossRefGoogle Scholar
  29. GSSI (2008a) RADAN Software: 3D QuickDraw Module. Geophysical Survey Systems, Inc., SalemGoogle Scholar
  30. GSSI (2008b) SIR System-3000: user’s manual. Geophysical Survey Systems Inc., SalemGoogle Scholar
  31. IMKO (2012) TRIME-PICO 64/32 ManualGoogle Scholar
  32. Jacobsen OH, Schjønning P (1995) Comparison of TDR calibration functions for soil water determination. Proc of the Symposium of Time-Domain Reflectometry Applications in Soil Sciences, 16 September 1994, Foulum (Denmark):25–33Google Scholar
  33. Jones SB, Wraith JM, Or D (2002) Time domain reflectometry measurement principles and applications. Hydrol Processes 16:141–153CrossRefGoogle Scholar
  34. Krampuls AY, Chubinsky NP (1996) Examining the Characteristics of Pulse Ground Penetrating Radar in Sounding and Profiling Modes. Proc of the 6th International Conf on Ground Penetrating Radar, 30.09—03 October 1996, Sendai (Japan), pp. 549–554Google Scholar
  35. Leckebusch J (2001) Die Anwendung des Bodenradar (GPR) in der archäologischen Prospektion. 3D-Visualisierung und Interpretation. Verlag Marie Leidorf, RahdenGoogle Scholar
  36. Leckebusch J (2011) Problems and Solutions with GPR data interpretation: depolarization and data continuity. Archaeol Prospect 18(4):303–308CrossRefGoogle Scholar
  37. Leckebusch J, Posselt M, Zickgraf B, Dobiat C (2007) Ground penetrating radar: verification and spatial corrections. In: Geophysik und Ausgrabung. Einsatz und Auswertung zerstörungsfreier Prospektion in der Archäologie. Internationale Archäologie. Naturwissenschaft und Technologie, vol 6. Verlag Marie Leidorf, Rahden, pp 17–25Google Scholar
  38. Linck R (2009) Adaption und Optimierung eines Bodenradargerätes für die geophysikalische Prospektion in der Archäologie. Diploma thesis, Ludwig-Maximilians-University MunichGoogle Scholar
  39. Malicki MA, Plagge R, Roth CH (1996) Improving the calibration of dielectric TDR soil moisture determination taking into account the solid soil. Europ J of Soil Sci 47:357–366CrossRefGoogle Scholar
  40. Milsom J (2003) Field geophysics, 3rd edn. Wiley, HobokenGoogle Scholar
  41. Neubauer W, Eder-Hinterleitner A, Seren S, Melichar P (2002) Georadar in the Roman Civil Town Carnuntum, Austria: an approach for archaeological interpretation of GPR data. Archaeol Prospect 9(3):135–156CrossRefGoogle Scholar
  42. Nishimura Y, Goodman D (2000) Ground-penetrating radar survey at Wroxeter. Archaeol Prospect 7(2):101–105CrossRefGoogle Scholar
  43. Noborio K (2001) Measurement of soil water content and electrical conductivity by time domain reflectometry: a review. Comp Electr Agric 31:213–237CrossRefGoogle Scholar
  44. Novo A (2009) 3D GPR Imaging for Archaeological Prospection. Dissertation, University of VigoGoogle Scholar
  45. Pomfret J (2006) Ground-penetrating radar profile spacing and orientation for subsurface resolution of linear features. Archaeol Prospect 13(2):151–153CrossRefGoogle Scholar
  46. Reeves TL, Elgezawi SM (1992) Time domain reflectometry for measuring volumetric water content in processed oil shale waste. Water Resour Res 28:769–776CrossRefGoogle Scholar
  47. Robinson DA, Jones SB, Wraith JM, Or D, Friedman SP (2003) A review of advances in dielectric and electric conductivity measurements using time domain reflectometry. Vadose Zone J 2(4):444–475CrossRefGoogle Scholar
  48. Roth K, Schulin R, Flühler H, Attinger W (1990) Calibration of time domain reflectometry for water content measurements using a composite dielectric approach. Water Resour Res 26(10):2267–2273Google Scholar
  49. Skierucha W (2011) Time domain reflectometry: temperature-dependent measurements of soil dielectric permittivity. In: Zhurbenko V (ed) Electromagnetic Waves. InTech, Rijeka. http://www.intechopen.com/books/show/title/electromagnetic-waves. Accessed 14 February 2012
  50. Stein J, Kane DL (1985) Reply. Water Resour Res 21:1057–1058CrossRefGoogle Scholar
  51. Topp GC, Davis JL (1985) Time-domain reflectometry (TDR) and its application to irrigation scheduling. In: Hillel D (ed) Advances in irrigation, vol 3. Academic, New York, pp 107–127Google Scholar
  52. Topp GC, Davis JL, Annan AP (1980) Electromagnetic determination of soil water content: measurement in coaxial transmission lines. Water Resour Res 16(3):574–582CrossRefGoogle Scholar
  53. Topp GC, Davis JL, Bailey WG, Zebchuk WD (1984) The measurement of soil water content using a portable TDR hand probe. Can J of Soil Sci 64:313–321CrossRefGoogle Scholar
  54. Weitz AM, Grauel WT, Keller M, Veldkamp E (1997) Calibration of time domain reflectometry technique using undisturbed soil samples from humid tropical soils of volcanic origin. Water Resour Res 33:1241–1249CrossRefGoogle Scholar
  55. Winkelmann F, Fabricius E (1932) Der Raetische Limes von Kipfenberg bis zur Donau. – Obergermanisch Raetischer Limes A, vol 7. Verlag von Otto Petters, Heidelberg, pp 48–49Google Scholar
  56. Wollny KG (1999) Die Natur der Bodenwelle des Georadar und ihr Einsatz zur Feuchtebestimmung. Dissertation, Ludwig-Maximilians-University MunichGoogle Scholar
  57. Ziechaus H (1975) Hienheim, Lkr. Kelheim. Mtbl. 7136. Verhandlungen des Hist Ver für Niederbayern 101:60Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Bavarian State Department for Monuments and Sites, Ref. ZII Archaeological ProspectionMunichGermany
  2. 2.Department of Earth and Environmental Sciences, GeophysicsLudwig-Maximilians-UniversityMunichGermany

Personalised recommendations