Roman amber identified as Siegburgite

  • Christian Dietz
  • Gianluca Catanzariti
  • Sergio Quintero
  • Alfredo Jimeno
Original Paper

Abstract

A small amber fragment from the period of Roman occupation of Numantia (Garray, Spain) was characterised by Fourier transformed infrared spectroscopy and optical microscopy. The material was found to be a polystyrene-like material, which is a very rare fossil resin known as Siegburgite or class III amber. Until now, this material was found in Europe only at two sites, both localised in Germany, and it is the first time that this type of amber was identified in wrought archaeological artefacts. The discussion includes the applicability of the method to distinguish false from true and amber of different origins, its use and trading as well as a hypothesis for a transport route. The study highlights the need for a more systematic study of archaeological amber remains. The finding also proves the exploitation and trading of local, non-Baltic amber deposits throughout the Roman Empire.

Keywords

Numantia Roman Empire Amber Amber route Siegburgite FTIR 

Notes

Acknowledgements

The European Commission Social Fund and the Spanish Ministry for Science and Innovation are gratefully acknowledged for co-funding the present investigation via the National Plan for Scientific Investigation, Development and Technology 2008–2011. Thanks to José Fernández, from the Centre for Infrared and Raman Spectroscopy of the Complutense University for help with the FTIR measurements. Thanks also to Antonio Criado Portal for fruitful discussions and support with optical microscopy.

References

  1. Aguilera y Gamboa E (1916) Las necrópolis ibéricas. Madrid, p 229Google Scholar
  2. Álvarez E, Peñalver E, Delclòs X (2005) La presencia de ámbar en los yacimientos prehistóricos (del Paleolítico Superior a la Edad del bronce) de la Cornisa cantábrica y sus fuentes de aprovisionamiento. Zephyrus 58:159–182Google Scholar
  3. Anderson KB, Crelling JC (1995) Amber, resinite, and fossil resins. In: Anderson KB and Crelling JC (eds) ACS Symposium Series 617, Washington, pp 11–17Google Scholar
  4. Angelini I, Bellintani P (2005) Archaeological ambers from northern Italy: an FTIR–DRIFT study of provenance by comparison with the geological amber database. Archaeometry 47:441–454CrossRefGoogle Scholar
  5. Aurisicchio C, Ferro D, Martinelli G, Nunziante Cesaro S, Rapinesi IA (2002) A study of a distaff of the second century A.D. from a necropolis of Boccone D’Aste (Rome, Italy)-tomb 75. J Cult Herit 2:107–116CrossRefGoogle Scholar
  6. Beck CW (1986) Spectroscopic investigations of amber. Appl Spectrosc Rev 22:57–110CrossRefGoogle Scholar
  7. Beck CW, Shennan S (1991) Amber in Prehistoric Britain. Oxbow Monograph 8, Oxford, pp 127–128Google Scholar
  8. Beck CW (1997) Détermination de la provenance des resines fossiles par l'analyse spectrale en infrarouge. In: Leesch D (ed) Hauterive-Champréveyres Un campement magdalénien au bord du lac de Neuchâtel Cadre chronologique et culturel, mobilier et structures, analyse spatiele (Sector 1). Archéologie neuchâteloise 19, Neuchâtel, pp 105–107Google Scholar
  9. Beck C, Vilaça R, Stout E (2002) Provenience analysis of prehistoric amber artefacts in Portugal. M M 43:61–78Google Scholar
  10. Brody RH, Edwards HGM, Pollard AM (2001) A study of amber and copal samples using FT-Raman spectroscopy. Spectrochim Acta A 57:1325–1338CrossRefGoogle Scholar
  11. Carlsen L, Feldthus A, Klarskov T, Shedrinsky A (1997) Geographical classification of amber based on pyrolysis-and infra-red spectroscopy data. J Anal Appl Pyr 43:71–81CrossRefGoogle Scholar
  12. Cebulak S, Matuszewska A, Langier-Kuźnierowa A (2003) Diversification of natural resins of various originoxy reactive thermal analysis and infrared spectroscopy. J Therm Anal Calorim 71:905–914CrossRefGoogle Scholar
  13. Cerdeño ML, Martínez JA, Agua F, Sagardoy T, Monasterio M (2012) Ámbar en la Meseta Oriental durante el Bronce Final. Yacimientos locales e importaciones bálticas, Trab Prehist (in press)Google Scholar
  14. Czechowski F, Simoneit BRT, Sachanbiński M, Chojcan J, Wołowiec S (1996) Physicochemical structural characterization of ambers from deposits in Poland. Appl Geochem 11:811–834CrossRefGoogle Scholar
  15. de Saint Pèrier R (1936) La Grotte d'Isturitz, II. Le Magdalénien de la Grand Salle. In: Éds. Masson (ed) Archives de L'Institut de Paléontologie Humaine, Mémoire 17, París, p 46Google Scholar
  16. du Gardin C (1986) La parure d'ambre à l'âge du Bronze en France". B Préhist Fr 83:546–580CrossRefGoogle Scholar
  17. du Gardin C (2003) Amber spacer beads in the Neolithic and Bronze Ages in Europe. In: Amber in Archaeology (ed) Proceedings of the 4th International Conference on Amber in Archaeology, Talsi 2001. Institute of the History of Latvia Publishers, Riga, pp 180–198Google Scholar
  18. Galetti GC, Mazzeo R (1993) Pyrolysis/gas chromatography/mass spectrometry and Fourier-transform infrared spectroscopy of amber. Rapid Commun Mass Sp 7:646–650CrossRefGoogle Scholar
  19. Grimaldi D, Beck CW, Boon JJ (1989) Occurrence, chemical characteristics, and paleontology of the fossil resins from New Jersey. Am Mus Novit 2948:1–27Google Scholar
  20. Guiliano M, Asia L, Onoratini G, Mille G (2007) Applications of diamond crystal ATR FTIR spectroscopy to the characterization of ambers. Spectrochim Acta A 67:1407–1411CrossRefGoogle Scholar
  21. Jimeno A, Revilla ML, de la Torre JI, Berzosa R, Martínez JP (2002) Numancia: Guía del yacimiento. Guía Arqueológia, SoriaGoogle Scholar
  22. Klebs R (1888) Colour and imitations of amber. Lecture in: Schriften der Königlichen Physikalisch-ökonomischen Gesellschaft zu Königsberg 28:20–25Google Scholar
  23. Kosmowska-Ceranowicz B (2003) Amber imitations in the Warsaw amber collection. Acta Zool Cracoviensia 46:411–421Google Scholar
  24. Krumbiegel G, Kosmowska-Ceranowicz B (2004) Bitterfelder Bernsteinarten und-varianten im Vergleich mit anderen Lagerstätten. In: Wimmer R, Holz U, Rascher J (eds) Bitterfelder Bernstein: Lagerstätte, Rohstoff, Folgennutzung. Exkursionsführer und Veröffentlichungen GGW Berlin 224, pp 45–57Google Scholar
  25. Lambert JB, Beck CW, Frye JS (2007) Analysis of european amber by carbon-13 nuclear magnetic resonance spectroscopy. Archaeometry 30:248–263CrossRefGoogle Scholar
  26. Lasaulx A (1875) Mineralogisch-krystallographische Notizen. I. Siegburgit, ein neues fossiles Harz. Neues Jahrb Mineral Geolog Paläont 128–135Google Scholar
  27. Lorrio A (2008) Qurénima. El Bronce Final del Sureste de la Península Ibérica. Real Academia de la Historia, MadridGoogle Scholar
  28. Marynowski L, Otto A, Zaton M, Philippe M, Simoneit B (2007) Biomolecules preserved in ca. 168 million year old fossil conifer wood. Naturwissenschaften 94:228–236CrossRefGoogle Scholar
  29. Merkevičius A, Bezdicka P, Juškėnas R, Kiuberis J (2007) XRD and SEM characterization of archaeological findings excavated in Lithuania. Chemija 18:36–39Google Scholar
  30. Pakutinskiene I, Kiuberis J, Bezdicka P, Senvaitiene J, Kareiva A (2007) Analytical characterization of Baltic amber by FTIR, XRD and SEM. Can J Anal Sci Spectrosc 52:287–294Google Scholar
  31. Pastorova I, Weeding T, Boon JJ (1998) 3-Phenylpropanylcinnamate, a copolymer unit in Siegburgite fossil resin: a proposed marker for the Hammamelidaceae. Org Geochem 29:1381–1393CrossRefGoogle Scholar
  32. Peters KE, Walters CC, Moldowan JM (2005) The biomarker guide, 2nd edn, vol 2. Cambridge University Press, CambridgeGoogle Scholar
  33. C Plinius Secundus, Historia Naturales, Liber XXXVI, 42–51 (de sucino)Google Scholar
  34. Rovira i Port J (1994) Ámbar y pasta vítrea. Elementos de prestigio entre el neolítico avanzado y el bronce final del nordeste de la península ibérica Un primer estado de la cuestión. Cuad Castellon 16:67–91Google Scholar
  35. Wielowiejski J (1995) Der Forschungsstand über den Hauptweg der Bernsteinstrasse. In: Wozniak Z (ed) Kontakte längs der Bernsteinstrabe (zwischen Caput Adriae und den Ostseegebieten) in der Zeit um Christi Geburt, vol 04. Materialien des Symposiums Kraków, Krakow, pp 26–29Google Scholar
  36. Wolfe AP, Tappert R, Muehlenbachs K, Boudreau M, McKellar RC, Basinger JF, Garrett A (2009) A new proposal concerning the botanical origin of Baltic amber. Proc R Soc B 276:3403–3412CrossRefGoogle Scholar
  37. G Cornelius Tacitus, De Origine et situ GermanorumGoogle Scholar
  38. Vandenabeele P, Grimaldi DM, Edwards HGM, Moens L (2003) Raman spectroscopy of different types of Mexican copal resins. Spectrochim Acta A 59:2221–2229CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christian Dietz
    • 1
  • Gianluca Catanzariti
    • 1
  • Sergio Quintero
    • 2
  • Alfredo Jimeno
    • 2
  1. 1.Centre for Archaeometry and Archaeological AnalysisComplutense University of MadridMadridSpain
  2. 2.Faculty of History and Geography, Department of PrehistoryComplutense University of MadridMadridSpain

Personalised recommendations