Archaeological and Anthropological Sciences

, Volume 5, Issue 2, pp 159–182

Regional ecological variability and impact of the maritime fur trade on nearshore ecosystems in southern Haida Gwaii (British Columbia, Canada): evidence from stable isotope analysis of rockfish (Sebastes spp.) bone collagen

  • Paul Szpak
  • Trevor J. Orchard
  • Anne K. Salomon
  • Darren R. Gröcke
Original Paper

Abstract

The maritime fur trade (1785–1840s) led to the local extinction of sea otters (Enhydra lutris) in many parts of the northeast Pacific. On the basis of studies of extant sea otter populations, it has been established that they have a disproportionate effect on nearshore ecosystems by limiting sea urchin abundance and facilitating the establishment of nearshore kelp forests; in the absence of sea otters, a local reduction in kelp-derived carbon is therefore expected. We measured the isotopic composition (δ13C and δ15N) of rockfish (Sebastes spp.) bone collagen from late Holocene archaeological sites in southern Haida Gwaii, BC, Canada, using δ13C as a proxy for kelp-derived carbon in the diet and δ15N as a proxy for trophic position. We observed significant spatial variability in rockfish kelp-derived carbon (δ13C), but not trophic level (δ15N). Kelp-derived carbon varied largely as a function of site characteristics (wave exposure), suggesting that local oceanographic conditions are important factors with respect to consumer tissue isotopic compositions. Kelp-derived carbon decreased in post-European contact rockfish relative to pre-European contact rockfish, likely as a result of the reduction of kelp forests associated with the local extirpation of sea otters. Although we detected a reduction in kelp-derived carbon in rockfish diets, we found no shift in trophic level at sites occupied following the maritime fur trade. This implies a shift in local ecosystems, and particularly in carbon sources, following the maritime fur trade, likely due to a trophic cascade resulting from the local extirpation of sea otters. Stability in rockfish trophic levels, however, implies that rockfish continued to feed at similar trophic levels, consuming prey with similar nitrogen isotopic compositions.

Keywords

Maritime fur trade Tropic cascade Stable isotopes Historical ecology Sea otter (Enhydra lutrisNorthwest coast 

References

  1. Acheson SR (1998) In the wake of the Ya'aats' xaatgaay [‘Iron People’]: a study of changing settlement strategies among the Kunghit Haida. British Archaeological Reports International Series 711. John and Erica Hedges, OxfordGoogle Scholar
  2. Acheson SR (2005) Gwaii Haanas settlement archaeology. In: Fedje DW, Mathewes RW (eds) Haida Gwaii: human history and environment from the time of loon to the time of the iron people. UBC Press, Vancouver, pp 303–336Google Scholar
  3. Ambrose SH, DeNiro MJ (1986) The isotopic ecology of east African mammals. Oecologia 69(3):395–406. doi:10.1007/BF00377062 CrossRefGoogle Scholar
  4. Beals HK (1989) Juan Pérez on the northwest coast: six documents of his expedition in 1774. Oregon Historical Society Press, PortlandGoogle Scholar
  5. Beattie A (1999) Report of the BTF workshop on reconstruction of the Hecate Strait Ecosystem. In: Haggan N, Beattie A, Pauly D (eds) Back to the future: reconstructing the Hecate Strait Ecosystem, vol. 7, vol 3, The Fisheries Centre. University of British Columbia, Vancouver, pp 1–12Google Scholar
  6. Beaudreau AH (2009) The predatory role of lingcod (Ophiodon elongatus) in the San Juan Archipelago, Washington. Unpublished Ph.D. Dissertation, University of Washington, SeattleGoogle Scholar
  7. Bigg MA, MacAskie IB (1978) Sea otters reestablished in British Columbia. J Mammal 59(4):874–876CrossRefGoogle Scholar
  8. Blackman M (1990) Haida: traditional culture. In: Suttles W (ed) Handbook of North American Indians, vol 7, Northwest Coast. Smithsonian Institution, Washington, D.C., pp 240–260Google Scholar
  9. Bode A, Alvarez-Ossorio MT, Varela M (2006) Phytoplankton and macrophyte contributions to littoral food webs in the Galician upwelling estimated from stable isotopes. Mar Ecol Prog Ser 318:89–102. doi:10.3354/meps318089 CrossRefGoogle Scholar
  10. Bodkin JL (1988) Effects of kelp forest removal on associated fish assemblages in central California. J Exp Mar Biol Ecol 117(3):227–238. doi:10.1016/0022-0981(88)90059-7 CrossRefGoogle Scholar
  11. Braje TJ, Rick TC (eds) (2011) Human impacts on seals, sea lions, and sea otters: integrating archaeology and ecology in the Northeast Pacific. University of California Press, BerkeleyGoogle Scholar
  12. Breen PA, Carson TA, Foster JB, Stewart EA (1982) Changes in subtidal community structure associated with British Columbia sea otter transplants. Mar Ecol Prog Ser 7:13–20CrossRefGoogle Scholar
  13. Britton-Simmons KH, Foley G, Okamoto D (2009) Spatial subsidy in the subtidal zone: utilization of drift algae by a deep subtidal sea urchin. Aquat Biol 5(3):233–243. doi:10.3354/ab00154 CrossRefGoogle Scholar
  14. Brodeur RD (1991) Ontogenetic variations in the type and size of prey consumed by juvenile coho, Oncorhynchus kisutch, and chinook, O. tshawytscha, salmon. Environ Biol Fishes 30(3):303–315. doi:10.1007/bf02028846 CrossRefGoogle Scholar
  15. Buchsbaum R, Valliela I, Swain T, Dzierzeski M, Allen S (1991) Available and refractory nitrogen in detritus of coastal vascular plants and macroalgae. Mar Ecol Prog Ser 72:131–143CrossRefGoogle Scholar
  16. Burkhardt S, Riebesell U, Zondervan I (1999) Effects of growth rate, CO2 concentration, and cell size on the stable carbon isotope fractionation in marine phytoplankton. Geochim Cosmochim Acta 63(22):3729–3741. doi:10.1016/s0016-7037(99)00217-3 CrossRefGoogle Scholar
  17. Burton RK, Snodgrass JJ, Gifford-Gonzalez D, Guilderson T, Brown T, Koch PL (2001) Holocene changes in the ecology of northern fur seals: insights from stable isotopes and archaeofauna. Oecologia 128(1):107–115. doi:10.1007/s004420100631 CrossRefGoogle Scholar
  18. Bustamante RH, Branch GM (1996a) The dependence of intertidal consumers on kelp-derived organic matter on the west coast of South Africa. J Exp Mar Biol Ecol 196(1–2):1–28. doi:10.1016/0022-0981(95)00093-3 CrossRefGoogle Scholar
  19. Bustamante RH, Branch GM (1996b) Large scale patterns and trophic structure of southern African rocky shores: the roles of geographic variation and wave exposure. J Biogeogr 23(3):339–351. doi:10.1046/j.1365-2699.1996.00026.x CrossRefGoogle Scholar
  20. Bustamante RH, Branch GM, Eekhout S (1995) Maintenance of an exceptional intertidal grazer biomass in South Africa: subsidy by subtidal kelps. Ecology 76(7):2314–2329. doi:10.2307/1941704 CrossRefGoogle Scholar
  21. Cannon DY (1987) Marine fish osteology: a manual for archaeologists. Department of Archaeology, Simon Fraser University, BurnabyGoogle Scholar
  22. Carr MH (1989) Effects of macroalgal assemblages on the recruitment of temperate zone reef fishes. J Exp Mar Biol Ecol 126(1):59–76. doi:10.1016/0022-0981(89)90124-x CrossRefGoogle Scholar
  23. Carr MH (1991) Habitat selection and recruitment of an assemblage of temperate zone reef fishes. J Exp Mar Biol Ecol 146(1):113–137. doi:10.1016/0022-0981(91)90257-W CrossRefGoogle Scholar
  24. Carr MH (1994) Effects of macroalgal dynamics on recruitment of a temperate reef fish. Ecology 75(5):1320–1333. doi:10.2307/1937457 CrossRefGoogle Scholar
  25. Cerling TE, Harris JM, Leakey MG (1999) Browsing and grazing in elephants: the isotope record of modern and fossil Proboscideans. Oecologia 120(3):364–374. doi:10.1007/s004420050869 CrossRefGoogle Scholar
  26. Cherel Y, Hobson KA (2007) Geographical variation in carbon stable isotope signatures of marine predators: a tool to investigate their foraging areas in the Southern Ocean. Mar Ecol Prog Ser 329:281–287. doi:10.3354/meps329281 CrossRefGoogle Scholar
  27. Christie H, Jørgensen NM, Norderhaug KM, Waage-Nielsen E (2003) Species distribution and habitat exploitation of fauna associated with kelp (Laminaria Hyperborea) along the Norwegian Coast. J Mar Biol Assoc U K 83(04):687–699. doi:10.1017/S0025315403007653h CrossRefGoogle Scholar
  28. Clementz MT, Koch PL (2001) Differentiating aquatic mammal habitat and foraging ecology with stable isotopes in tooth enamel. Oecologia 129(3):461–472. doi:10.1007/s004420100745 Google Scholar
  29. Codding BF, Jones TL (2007) History and behavioral ecology during the middle-late transition on the Central California Coast: findings from the Coon Creek Site (CA-SLO-9), San Luis Obispo County. J Calif Gt Basin Anthropol 27(2):125–151Google Scholar
  30. Colten RH (1994) Prehistoric animal exploitation, environmental change, and emergent complexity on Santa Cruz Island, California. In: Halvorson WL, Maender GJ (eds) The fourth California Islands Symposium: update on the status of resources. Santa Barbara Museum of Natural History, Santa Barbara, pp 201–214Google Scholar
  31. Cornelisen CD, Wing SR, Clark KL, Bowman MH, Frew RD, Hurd CL (2007) Patterns in the δ13C and δ15N signature of Ulva pertusa: Interaction between physical gradients and nutrient source pools. Limnol Oceanogr 52(2):820–832CrossRefGoogle Scholar
  32. Crawford WR, Huggett WS, Woodward MJ (1988) Water transport through Hecate Strait, British Columbia. Atmosphere-Ocean 26(3):301–320. doi:10.1080/07055900.1988.9649305 CrossRefGoogle Scholar
  33. Crawford WR, Thomson RE (1991) Physical oceanography of the western Canadian continental shelf. Cont Shelf Res 11:669–683. doi:10.1016/0278-4343(91)90073-f CrossRefGoogle Scholar
  34. Crawford WR, Woodward MJ, Foreman MGG, Thomson RE (1995) Oceanographic features of Hecate Strait and Queen Charlotte Sound in summer. Atmosphere-Ocean 33(4):639–681. doi:10.1080/07055900.1995.9649549 CrossRefGoogle Scholar
  35. Crossman DJ, Choat JH, Clements KD, Hardy T, Jason M (2001) Detritus as food for grazing fishes on coral reefs. Limnol Oceanogr 46(7):1596–1605CrossRefGoogle Scholar
  36. Cummings D, Booth D, Lee R, Simpson S, Pile A (2010) Ontogenetic diet shifts in the reef fish Pseudanthias rubrizonatus from isolated populations on the north-west shelf of Australia. Mar Ecol Prog Ser 419:211–222. doi:10.3354/meps08827 CrossRefGoogle Scholar
  37. Dean TA, Haldorson L, Laur DR, Jewett SC, Blanchard A (2000) The distribution of nearshore fishes in kelp and eelgrass communities in Prince William Sound, Alaska: associations with vegetation and physical habitat characteristics. Environ Biol Fishes 57(3):271–287. doi:10.1023/a:1007652730085 CrossRefGoogle Scholar
  38. DeMartini EE, Roberts DA (1990) Effects of giant kelp (Macrocystis) on the density and abundance of fishes in a cobble-bottom kelp forest. Bull Mar Sci 46:287–300Google Scholar
  39. DeNiro MJ (1985) Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317(6040):806–809. doi:10.1038/317806a0 CrossRefGoogle Scholar
  40. DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42(5):495–506. doi:10.1016/0016-7037(78)90199-0 CrossRefGoogle Scholar
  41. Dick L (2006) The maritime fur trade in Southern Haida Gwaii (Queen Charlotte Islands), ca. 1787–1920. Western and Northern Service Centre, Parks Canada. Vancouver, British ColumbiaGoogle Scholar
  42. Duggins DO (1980) Kelp beds and sea otters: an experimental approach. Ecology 61(3):447–453. doi:10.2307/1937405 CrossRefGoogle Scholar
  43. Duggins DO, Eckman JE (1997) Is kelp detritus a good food for suspension feeders? Effects of kelp species, age and secondary metabolites. Mar Biol 128(3):489–495. doi:10.1007/s002270050115 CrossRefGoogle Scholar
  44. Duggins DO, Simenstad CA, Estes JA (1989) Magnification of secondary production by kelp detritus in coastal marine ecosystems. Science 245(4914):170–173. doi:10.1126/science.245.4914.170 CrossRefGoogle Scholar
  45. Dunton KH (2001) δ15N and δ13C measurements of Antarctic Peninsula Fauna: trophic relationships and assimilation of benthic seaweeds. Am Zool 41(1):99–112. doi:10.1668/0003-1569(2001)041[0099:NACMOA]2.0.CO;2 CrossRefGoogle Scholar
  46. Dunton KH, Saupe SM, Golikov AN, Schell DM, Schonberg SV (1989) Trophic relationships and isotopic gradients among arctic and subarctic marine fauna. Mar Ecol Prog Ser 56:89–97CrossRefGoogle Scholar
  47. Dunton KH, Schell DM (1987) Dependence of consumers on macroalgal (Laminaria solidungula) carbon in an arctic kelp community: δ13C evidence. Mar Biol 93(4):615–625. doi:10.1007/bf00392799 CrossRefGoogle Scholar
  48. Ebeling AW, Laur DR (1985) The influence of plant cover on surfperch abundance at an offshore temperate reef. Environ Biol Fishes 12(3):169–179. doi:10.1007/BF00005148 CrossRefGoogle Scholar
  49. Ebeling AW, Laur DR (1988) Fish populations in kelp forests without sea otters: effects of severe storm damage and destructive sea urchin grazing. In: VanBlaricom GR, Estes JA (eds) The community ecology of sea otters, vol 65, Ecological Studies. Springer-Verlag, Berlin, pp 169–191CrossRefGoogle Scholar
  50. Erlandson JM, Rick TC (2009) Archaeology meets marine ecology: the antiquity of maritime cultures and human impacts on marine fisheries and ecosystems. Annu Rev Mar Sci 2(1):231–251. doi:10.1146/annurev.marine.010908.163749 CrossRefGoogle Scholar
  51. Estes JA, Duggins DO (1995) Sea otters and kelp forests in Alaska: generality and variation in a community ecological paradigm. Ecol Monogr 65(1):75–100. doi:10.2307/2937159 CrossRefGoogle Scholar
  52. Estes JA, Jameson RJ, Rhode EB (1982) Activity and prey selection in the sea otter: influence of population status on community structure. Am Nat 120(2):242–258CrossRefGoogle Scholar
  53. Estes JA, Palmisano JF (1974) Sea otters: their role in structuring nearshore communities. Science 185(4156):1058–1060. doi:10.1126/science.185.4156.1058 CrossRefGoogle Scholar
  54. Estes JA, Smith NS, Palmisano JF (1978) Sea otter predation and community organization in the western Aleutian Islands, Alaska. Ecology 59(4):822–833. doi:10.2307/1938786 CrossRefGoogle Scholar
  55. Fedje DW, Mackie AP, Wigen RJ, Mackie Q, Lake C (2005) Kilgii Gwaay: an early maritime site in the south of Haida Gwaii. In: Fedje DW, Mathewes RW (eds) Haida Gwaii: Human History and Environment from the Time of Loon to the Time of the Iron People. UBC Press, Vancouver, pp 187–203Google Scholar
  56. Foster MS (1990) Organization of macroalgal assemblages in the Northeast Pacific: the assumption of homogeneity and the illusion of generality. Hydrobiologia 192(1):21–33. doi:10.1007/BF00006225 CrossRefGoogle Scholar
  57. Foster MS, Schiel DR (1988) Kelp communities and sea otters: keystone species or just another brick in the wall? In: VanBlaricom GR, Estes JA (eds) The community ecology of sea otters, vol 65, Ecological studies. Springer, Berlin, pp 92–115CrossRefGoogle Scholar
  58. Foster MS, Schiel DR (2010) Loss of predators and the collapse of southern California kelp forests (?): alternatives, explanations and generalizations. J Exp Mar Biol Ecol 393(1–2):59–70. doi:10.1016/j.jembe.2010.07.002 CrossRefGoogle Scholar
  59. France RL (1995) Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Mar Ecol Prog Ser 124:307–312. doi:10.3354/meps124307 CrossRefGoogle Scholar
  60. Frederick G, Crockford SJ (2005) Analysis of vertebrate fauna from Ts’ishaa village, DfSi 16, Benson Island. In: McMillan AD, Claire DE (eds) Ts’ishaa: archaeology and ethnography of a Nuu-chah-nulth origin site in Barkley Sound. Archaeology Press, Simon Fraser University, Burnaby, pp 173–205Google Scholar
  61. Fredriksen S (2003) Food web studies in a Norwegian kelp forest based on stable isotope (δ13C and δ15N) analysis. Mar Ecol Prog Ser 260:71–81. doi:10.3354/meps260071 CrossRefGoogle Scholar
  62. Gerard VA (1976) Some aspects of material dynamics and energy flow in a kelp forest in Monterey Bay, California. Unpublished Ph.D. Dissertation, University of California, Santa CruzGoogle Scholar
  63. Gibson JR (1988) The maritime trade of the north Pacific coast. In: Washburn WE (ed) Handbook of North American Indians, vol 4, History of Indian-White Relations. Smithsonian Institution, Washington, D.C., pp 375–390Google Scholar
  64. Gobalet KW, Jones TL (1995) Prehistoric native American fisheries of the Central California Coast. Trans Am Fish Soc 124:813–823CrossRefGoogle Scholar
  65. Graeme I (1989) The colonisation and degradation of stranded Macrocystis pyrifera (L.) C. Ag. by the macrofauna of a New Zealand sandy beach. J Exp Mar Biol Ecol 125(3):203–217. doi:10.1016/0022-0981(89)90097-x CrossRefGoogle Scholar
  66. Gregr EJ, Nichol LM, Watson JC, Ford JKB, Ellis GM (2008) Estimating carrying capacity for sea otters in British Columbia. J Wildl Manag 72(2):382–388. doi:10.2193/2006-518 CrossRefGoogle Scholar
  67. Hallacher L, Roberts D (1985) Differential utilization of space and food by the inshore rockfishes (Scorpaenidae: Sebastes) of Carmel Bay, California. Environ Biol Fishes 12(2):91–110. doi:10.1007/BF00002762 CrossRefGoogle Scholar
  68. Hamilton SL, Caselle JE, Lantz CA, Egloff TL, Kondo E, Newsome SD, Loke-Smith K, Pondella DJ II, Young KA, Lowe CG (2011) Extensive geographic and ontogenetic variation characterizes the trophic ecology of a temperate reef fish on southern California (USA) rocky reefs. Mar Ecol Prog Ser 429:227–244. doi:10.3354/meps09086 CrossRefGoogle Scholar
  69. Hannah RW, Rankin PS (2011) Site fidelity and movement of eight species of Pacific rockfish at a high-relief rocky reef on the Oregon Coast. N Am J Fish Manag 31(3):483–494. doi:10.1080/02755947.2011.591239 CrossRefGoogle Scholar
  70. Hanson DK, Kusmer KD (2001) Sea otter (Enhydra lutris) scarcity in the strait of Georgia, British Columbia. In: Gerlach SC, Murray MS (eds) People and Wildlife in Northern North America: Essays in honor of R. Dale Guthrie. British Archaeological Reports International Series 944. Archaeopress, Oxford, pp 58–66Google Scholar
  71. Hard RJ, Katzenberg MA (2011) Stable isotope study of hunter-gatherer-fisher diet, mobility, and intensification on the Texas Gulf Coastal Plain. Am Antiq 76(4):709–751CrossRefGoogle Scholar
  72. Hare PE, Fogel ML, Stafford TW, Mitchell AD, Hoering TC (1991) The isotopic composition of carbon and nitrogen in individual amino acids isolated from modern and fossil proteins. J Archaeol Sci 18(3):277–292. doi:10.1016/0305-4403(91)90066-X CrossRefGoogle Scholar
  73. Harper JR, Austin WT, Morris M, Reimer PD, Reitmeier R (1994) A Biophysical Inventory of the Coastal Resources in Gwaii Haanas. Coastal and Ocean Resources, Inc., CalgaryGoogle Scholar
  74. Harper JR, Morris MC (2006) Living Marine Legacy of Gwaii Haanas V: Coastal Zone Values and Management around Haida Gwaii. In: Sloan NA (ed) Coastal thematic summaries. Gwaii Haanas National Park Reserve and Haida Heritage Site, Queen Charlotte, pp 181–215Google Scholar
  75. Heifetz J, DiCosimo J, Gharrett AJ, Love MS, O'Connell VM, Stanley RD (eds) (2007) Biology, assessment, and management of North Pacific Rockfishes. Alaska Sea Grant, University of Alaska, FairbanksGoogle Scholar
  76. Hill JM, McQuaid CD (2008) δ13C and δ15N biogeographic trends in rocky intertidal communities along the coast of South Africa: evidence of strong environmental signatures. Estuar Coast Shelf Sci 80(2):261–268. doi:10.1016/j.ecss.2008.08.005 CrossRefGoogle Scholar
  77. Hill JM, McQuaid CD, Kaehler S (2006) Biogeographic and nearshore-offshore trends in isotope ratios of intertidal mussels and their food sources around the coast of southern Africa. Mar Ecol Prog Ser 318:63–73. doi:10.3354/meps318063 CrossRefGoogle Scholar
  78. Hixon MA (1980) Competitive interactions between California reef fishes of the genus Embiotoca. Ecology 61(4):918–931. doi:10.2307/1936761 CrossRefGoogle Scholar
  79. Hobson KA, Piatt JF, Pitocchelli J (1994) Using stable isotopes to determine seabird trophic relationships. J Anim Ecol 63(4):786–798CrossRefGoogle Scholar
  80. Holbrook SJ, Carr MH, Schmitt RJ, Coyer JA (1990) Effect of giant kelp on local abundance of reef fishes: the importance of ontogenetic resource requirements. Bull Mar Sci 47:104–114Google Scholar
  81. Holbrook SJ, Schmitt RJ (1984) Experimental analyses of patch selection by foraging black surfperch (Embiotoca jacksoni Agazzi). J Exp Mar Biol Ecol 79(1):39–64. doi:10.1016/0022-0981(84)90029-7 CrossRefGoogle Scholar
  82. Hurd CL (2000) Water motion, marine macroalgal physiology, and production. J Phycol 36(3):453–472. doi:10.1046/j.1529-8817.2000.99139.x CrossRefGoogle Scholar
  83. Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RR (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293(5530):629–637. doi:10.1126/science.1059199 CrossRefGoogle Scholar
  84. Jameson RJ, Kenyon KW, Johnson AM, Wight HM (1982) History and status of translocated sea otter populations in North America. Wildl Soc Bull 10(2):100–107Google Scholar
  85. Jamieson GS, Campbell A (1995) Red sea urchins and kelp in northern British Columbia. In: Skjoldal HR, Hopkins C, Erikstad KE, Leinaas HP (eds) Ecology of fjords and coastal waters. Elsevier, Amsterdam, pp 537–547Google Scholar
  86. Johnson DW (2006) Predation, habitat complexity, and variation in density-dependent mortality of temperate reef fishes. Ecology 87(5):1179–1188. doi:10.1890/0012-9658(2006)87[1179:phcavi]2.0.co;2 CrossRefGoogle Scholar
  87. Johnson SW, Murphy ML, Csepp DJ (2003) Distribution, habitat, and behavior of rockfishes, Sebastes spp., in nearshore waters of Southeastern Alaska: observations from a remotely operated vehicle. Environ Biol Fishes 66(3):259–270. doi:10.1023/a:1023981908146 CrossRefGoogle Scholar
  88. Jones TL, Culleton BJ, Larson S, Mellinger S, Porcasi JF (2011) Toward a prehistory of the southern sea otter (Enhydra lutris nereis). In: Braje TJ, Rick TC (eds) Human Impacts on Seals, Sea Lions, and Sea Otters: Integrating Archaeology and Ecology in the Northeast Pacific. University of California Press, Berkeley, pp 243–271Google Scholar
  89. Jones TL, Garza SC, Porcasi JF, Gaeta JW (2009) Another trans-Holocene sequence from Diablo Canyon: new faunal and radiocarbon findings from CA-SLO-585, San Luis Obispo County, California. J of Calif and Great Basin Anthropol 29(1):19–31Google Scholar
  90. Jones TL, Porcasi JF, Gaeta JW, Codding BF (2008) The Diablo Canyon Fauna: a coarse-grained record of trans-holocene foraging from the Central California Mainland Coast. Am Antiq 73(2):289–316Google Scholar
  91. Jorgensen SJ, Kaplan DM, Klimley AP, Morgan SG, O’Farrell MR, Botsford LW (2006) Limited movement in blue rockfish Sebastes mystinus: internal structure of home range. Mar Ecol Prog Ser 327:157–170. doi:10.3354/meps327157 CrossRefGoogle Scholar
  92. Kaehler S, Pakhomov EA, Kalin RM, Davis S (2006) Trophic importance of kelp-derived suspended particulate matter in a through-flow sub-Antarctic system. Mar Ecol Prog Ser 316:17–22. doi:10.3354/meps316017 CrossRefGoogle Scholar
  93. Kang C-K, Choy E, Son Y, Lee J-Y, Kim J, Kim Y, Lee K-S (2008) Food web structure of a restored macroalgal bed in the eastern Korean peninsula determined by C and N stable isotope analyses. Mar Biol 153(6):1181–1198. doi:10.1007/s00227-007-0890-y CrossRefGoogle Scholar
  94. Kang C-K, Kim JB, Lee K-S, Kim JB, Lee P-Y, Hong J-S (2003) Trophic importance of benthic microalgae to macrozoobenthos in coastal bay systems in Korea: dual stable C and N isotope analyses. Mar Ecol Prog Ser 259:79–92. doi:10.3354/meps259079 CrossRefGoogle Scholar
  95. Kenyon KW (1969) The sea otter in the Eastern Pacific Ocean. North American Fauna, No. 68. U.S. Government Printing Office, Washington, D.CGoogle Scholar
  96. Kopczyńska EE, Goeyens L, Semeneh M, Dehairs F (1995) Phytoplankton composition and cell carbon distribution in Prydz Bay, Antarctica: relation to organic particulate matter and its δ13C values. J Plankton Res 17(4):685–707. doi:10.1093/plankt/17.4.685 CrossRefGoogle Scholar
  97. Krumhansl KA, Scheibling RE (2011) Detrital production in Nova Scotian kelp beds: patterns and processes. Mar Ecol Prog Ser 421:67–82. doi:10.3354/meps08905 CrossRefGoogle Scholar
  98. Kvitek RG, Shull D, Canestro D, Bowlby EC, Troutman BL (1989) Sea otters and benthic prey communities in Washington state. Mar Mamm Sci 5(3):266–280. doi:10.1111/j.1748-7692.1989.tb00340.x CrossRefGoogle Scholar
  99. Laidre KL, Jameson RJ, Gurarie E, Jeffries SJ, Allen H (2009) Spatial habitat use patterns of sea otters in coastal Washington. J Mammal 90(4):906–917. doi:10.1644/08-mamm-a-338.1 CrossRefGoogle Scholar
  100. Larson RJ (1980a) Competition, habitat selection, and the Bathymetric segregation of two rockfish (Sebastes) species. Ecol Monogr 50(2):221–239. doi:10.2307/1942480 CrossRefGoogle Scholar
  101. Larson RJ (1980b) Territorial behavior of the black and yellow rockfish and gopher rockfish (Scorpaenidae, Sebastes). Mar Biol 58(2):111–122. doi:10.1007/bf00396122 CrossRefGoogle Scholar
  102. Larson RJ, DeMartini EE (1984) Abundance and vertical distribution of fishes in a cobble-bottom kelp forest off San Onofre, California. Fish Bull 82(1):37–53Google Scholar
  103. Laur DR, Ebeling AW, Coon DA (1988) Effects of sea otter foraging on subtidal reef communities off Central California. In: VanBlaricom GR, Estes JA (eds) The community ecology of sea otters, vol 65, Ecological studies. Springer, Berlin, pp 151–168CrossRefGoogle Scholar
  104. Laws EA, Popp BN, Bidigare RR, Kennicutt MC, Macko SA (1995) Dependence of phytoplankton carbon isotopic composition on growth rate and [CO2]aq: theoretical considerations and experimental results. Geochim Cosmochim Acta 59(6):1131–1138. doi:10.1016/0016-7037(95)00030-4 CrossRefGoogle Scholar
  105. Leighton DL, Jones LG, North W (1966) Ecological relationships between giant kelp and sea urchins in southern California. In: Young EG, McLachlan JL (eds) Proceedings of the 5th International Seaweed Symposium, Oxford, England. Pergamon Press, Oxford, pp 141–153Google Scholar
  106. Li Z, Gray AK, Love MS, Asahida T, Gharrett AJ (2006) Phylogeny of members of the rockfish (Sebastes) subgenus Pteropodus and their relatives. Can J Zool 84(4):527–536. doi:10.1139/z06-022 CrossRefGoogle Scholar
  107. Longin R (1971) New method of collagen extraction for radiocarbon dating. Nature 230(5291):241–242. doi:10.1038/230241a0 CrossRefGoogle Scholar
  108. Love M, Carr M, Haldorson L (1991) The ecology of substrate-associated juveniles of the genus Sebastes. Environ Biol Fishes 30(1):225–243. doi:10.1007/bf02296891 CrossRefGoogle Scholar
  109. Love MS (1979) Isolation of olive rockfish, Sebastes serranoides, populations off southern California. Fish Bull 77(4):975–983Google Scholar
  110. Love MS, Morris P, McCrae M, Collins R (1990) Life history aspects of 19 rockfish species (Scorpaenidae: Sebastes) from the Southern California Bight. In. NOAA Technical Report NMFS 87Google Scholar
  111. Love MS, Westphal WV (1981) Growth, reproduction, and food habits of olive rockfish, Sebastes serranoides, of central California. Fish Bull 79(3):533–545Google Scholar
  112. Love MS, Yoklavich MM, Thorsteinson L (2002) The rockfishes of the Northeast Pacific. University of California Press, BerkeleyGoogle Scholar
  113. Lowry MS, Stewart BS, Heath CB, Yochem PK, Francis JM (1991) Seasonal and annual variability in the diet of California sea lions Zalophus californianus at San Nicolas Island, California, 1981–86. Fish Bull 89(2):331–336Google Scholar
  114. Mackie Q, Orchard TJ, Lake C (2001) The Environmental Archaeology Pilot Project in Gwaii Haanas. Report to the British Columbia Heritage Trust, Victoria, British ColumbiaGoogle Scholar
  115. Mann KH (1973) Seaweeds: their productivity and strategy for growth. Science 182(4116):975–981. doi:10.1126/science.182.4116.975 CrossRefGoogle Scholar
  116. Markel RW (2011) Rockfish recruitment and trophic dynamics on the west coast of Vancouver Island: Fishing, ocean climate, and sea otters. Unpublished Ph.D. Dissertation, University of British Columbia, VancouverGoogle Scholar
  117. Martin JC, Lacko LC, Yamanaka KL (2006) A pilot study using a remotely operated vehicle (ROV) to observe inshore rockfish (Sebastes spp.) in the southern Strait of Georgia, March 3–11, 2005. Can Tech Rep Fish Aquat Sci 2663:36Google Scholar
  118. Martin JC, Yamanaka KL (2004) A visual survey of inshore rockfish abundance and habitat in the southern Strait of Georgia using a shallow-water towed video system. Can Tech Rep Fish Aquat Sci 2566:52Google Scholar
  119. Mathews SB, Barker MW (1983) Movements of rockfish (Sebastes) tagged in northern Puget Sound, Washington. Fish Bull 83(1):916–922Google Scholar
  120. Matthews KR (1990a) A comparative study of habitat use by young-of-the-year, subadult, and adult rockfishes on four habitat types in central Puget Sound. Fish Bull 88(2):223–239Google Scholar
  121. Matthews KR (1990b) An experimental study of the habitat preferences and movement patterns of copper, quillback, and brown rockfishes (Sebastes spp.). Environ Biol Fishes 29(3):161–178. doi:10.1007/bf00002217 CrossRefGoogle Scholar
  122. Matthews KR (1990c) A telemetric study of the home ranges and homing routes of copper and quillback rockfishes on shallow rocky reefs. Can J Zool 68(11):2243–2250. doi:10.1139/z90-312 CrossRefGoogle Scholar
  123. McKechnie I (2007) Investigating the complexities of sustainable fishing at a prehistoric village on western Vancouver Island, British Columbia, Canada. J Nat Conserv 15(3):208–222. doi:10.1016/j.jnc.2007.05.001 CrossRefGoogle Scholar
  124. McKechnie I, Wigen RJ (2011) Toward a historical ecology of pinniped and sea otter hunting traditions on the coast of southern British Columbia. In: Braje TJ, Rick TC (eds) Human impacts on seals, sea lions, and sea otters: integrating archaeology and ecology in the Northeast Pacific. University of California Press, Berkeley, pp 129–166Google Scholar
  125. Melteff BR (ed) (1987) Proceedings of the International Rockfish Symposium. Anchorage, Alaska, October 20–22, 1986. Alaska Sea Grant Report No. 87–2. University of Alaska, AnchorageGoogle Scholar
  126. Miller AK, Sydeman WJ (2004) Rockfish response to low-frequency ocean climate change as revealed by the diet of a marine bird over multiple time scales. Mar Ecol Prog Ser 281:207–216. doi:10.3354/meps281207 CrossRefGoogle Scholar
  127. Mills KL, Laidig T, Ralston S, Sydeman WJ (2007) Diets of top predators indicate pelagic juvenile rockfish (Sebastes spp.) abundance in the California Current System. Fish Oceanogr 16(3):273–283. doi:10.1111/j.1365-2419.2007.00429.x CrossRefGoogle Scholar
  128. Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim Cosmochim Acta 48(5):1135–1140. doi:10.1016/0016-7037(84)90204-7 CrossRefGoogle Scholar
  129. Misarti N, Finney BP, Maschner H, Wooller MJ (2009) Changes in northeast Pacific marine ecosystems over the last 4500 years: evidence from stable isotope analysis of bone collagen from archaeological middens. Holocene 19(8):1139–1151. doi:10.1177/0959683609357824 CrossRefGoogle Scholar
  130. Mitamura H, Uchida K, Miyamoto Y, Arai N, Kakihara T, Yokota T, Okuyama J, Kawabata Y, Yasuda T (2009) Preliminary study on homing, site fidelity, and diel movement of black rockfish Sebastes inermis measured by acoustic telemetry. Fish Sci 75(5):1133–1140. doi:10.1007/s12562-009-0142-9 CrossRefGoogle Scholar
  131. Morinière EC, Pollux BJA, Nagelkerken I, Hemminga MA, Huiskes AHL, Velde G (2003) Ontogenetic dietary changes of coral reef fishes in the mangrove-seagrass-reef continuum: stable isotopes and gut-content analysis. Mar Ecol Prog Ser 246:279–289. doi:10.3354/meps246279 CrossRefGoogle Scholar
  132. Morris R, Ellis DV, Emerson BP (1981) The British Columbia transplant of sea otters Enhydra Lutris. Biol Conserv 20(4):291–295. doi:10.1016/0006-3207(81)90015-X CrossRefGoogle Scholar
  133. Moss ML, Yang DY, Newsome SD, Speller CF, McKechnie I, McMillan AD, Losey RJ, Koch PL (2006) Historical ecology and biogeography of north Pacific pinnipeds: isotopes and ancient DNA from three archaeological assemblages. J Isl Coast Archaeol 1(2):165–190. doi:10.1080/15564890600934129 CrossRefGoogle Scholar
  134. Munk KM (2001) Maximum ages of groundfishes in waters off Alaska and British Columbia and considerations of age determination. Alaska Fish Res Bull 8:12–21Google Scholar
  135. Murie DJ, Parkyn DC, Clapp BG, Krause GG (1994) Observations on the distribution and activities of rockfish, Sebastes spp., in Saanich Inlet, British Columbia, from the Pisces IV submersible. Fish Bull 92:313–323Google Scholar
  136. Nagtegaal DA (1983) Identification and description of assemblages of some commercially important rockfishes (Sebastes spp.) off British Columbia. Canadian Technical Report of Fisheries and Aquatic Sciences. Department of Fisheries and Oceans, Fisheries Research Branch, Pacific Biological Station, NanaimoGoogle Scholar
  137. Newell RC, Lucas MI, Velimirov B, Seiderer LJ (1980) Quantitative significance of dissolved organic losses following fragmentation of kelp (Ecklonia maxima and Laminaria pallida). Mar Ecol Prog Ser 2:45–59CrossRefGoogle Scholar
  138. Newsome SD, Clementz MT, Koch PL (2010) Using stable isotope biogeochemistry to study marine mammal ecology. Mar Mamm Sci 26(3):509–572. doi:10.1111/j.1748-7692.2009.00354.x Google Scholar
  139. Newsome SD, Etnier MA, Gifford-Gonzalez D, Phillips DL, van Tuinen M, Hadly EA, Costa DP, Kennett DJ, Guilderson TP, Koch PL (2007a) The shifting baseline of northern fur seal ecology in the northeast Pacific Ocean. Proc Natl Acad Sci 104(23):9709–9714. doi:10.1073/pnas.0610986104 CrossRefGoogle Scholar
  140. Newsome SD, Etnier MA, Kurle CM, Waldbauer JR, Chamberlain CP, Koch PL (2007b) Historic decline in primary productivity in western Gulf of Alaska and eastern Bering Sea: isotopic analysis of northern fur seal teeth. Mar Ecol Prog Ser 332:211–224. doi:10.3354/meps332211 CrossRefGoogle Scholar
  141. Nichol LM, Boogaards MD, Abernethy R (2009) Recent trends in the abundance and distribution of sea otters (Enhydra lutris) in British Columbia. Canadian Science Advisory Secretariat Research Document 2009/016, vol 2009/016. Fisheries and Oceans Canada, Nanaimo, British ColumbiaGoogle Scholar
  142. Norderhaug KM, Christie H (2011) Secondary production in a Laminaria hyperborea kelp forest and variation according to wave exposure. Estuar Coast Shelf Sci 95(1):135–144. doi:10.1016/j.ecss.2011.08.028 CrossRefGoogle Scholar
  143. Norderhaug KM, Fredriksen S, Nygaard K (2003) Trophic importance of Laminaria hyperborea to kelp forest consumers and the importance of bacterial degradation to food quality. Mar Ecol Prog Ser 255:135–144. doi:10.3354/meps255135 CrossRefGoogle Scholar
  144. O’Connell VM, Carlile DW (1993) Habitat-specific density of adult yelloweye rockfish Sebastes ruberrimus in the eastern Gulf of Alaska. Fish Bull 91(2):304–309Google Scholar
  145. Orchard TJ (2003) An application of the linear regression technique for determining length and weight of six fish taxa: the role of selected fish species in Aleut Paleodiet. British Archaeological Reports, International Series 1172. Archaeopress, OxfordGoogle Scholar
  146. Orchard TJ (2009) Otters and urchins: continuity and change in Haida economy during the Late Holocene and maritime fur trade periods. British Archaeological Reports International Series 2027. Archaeopress, OxfordGoogle Scholar
  147. Orchard TJ (2011) Mid- to Late Holocene Subsistence and Settlement in Gwaii Haanas: Analysis of Auger, Column, and Faunal Samples from 2009 and 2010 Fieldwork. Report submitted to Parks Canada, Cultural Resource Services, Western & Northern Canada Services Centre, Victoria and Vancouver, B.C.Google Scholar
  148. Orchard TJ, Szpak P (2011) Identification of salmon species from archaeological remains on the northwest coast. In: Moss M, Cannon A (eds) The archaeology of North Pacific fisheries. University of Alaska Press, FairbanksGoogle Scholar
  149. Orr M, Zimmer M, Jelinski DE, Mews M (2005) Wrack deposition on different beach types: spatial and temporal variation in the pattern of subsidy. Ecology 86(6):1496–1507. doi:10.1890/04-1486 CrossRefGoogle Scholar
  150. Osmond CB, Valaane N, Haslam SM, Uotila P, Roksandic Z (1981) Comparisons of δ13C values in leaves of aquatic macrophytes from different habitats in Britain and Finland; some implications for photosynthetic processes in aquatic plants. Oecologia 50(1):117–124. doi:10.1007/BF00378804 CrossRefGoogle Scholar
  151. Ostrom NE, Macko SA, Deibel D, Thompson RJ (1997) Seasonal variation in the stable carbon and nitrogen isotope biogeochemistry of a coastal cold ocean environment. Geochim Cosmochim Acta 61(14):2929–2942. doi:10.1016/S0016-7037(97)00131-2 CrossRefGoogle Scholar
  152. Page HM, Reed DC, Brzezinski MA, Melack JM, Dugan JE (2008) Assessing the importance of land and marine sources of organic matter to kelp forest food webs. Mar Ecol Prog Ser 360:47–62. doi:10.3354/meps07382 CrossRefGoogle Scholar
  153. Paine RT (1980) Food webs: linkage, interaction strength and community infrastructure. J Anim Ecol 49(3):667–685. doi:10.2307/4220 CrossRefGoogle Scholar
  154. Parker SJ, Berkeley SA, Golden JT, Gunderson DR, Heifetz J, Hixon MA, Larson R, Leaman BM, Love MS, Musick JA, O’Connell VM, Ralston S, Weeks HJ, Yoklavich MM (2000) Management of Pacific rockfish. Fisheries 25(3):22–30. doi:10.1577/1548-8446(2000)025<0022:mopr>2.0.co;2 CrossRefGoogle Scholar
  155. Parker SJ, Rankin PS, Olson JM, Hannah RW (2007) Movement patterns of black rockfish (Sebastes melanops) in Oregon coastal waters. In: Heifetz J, DiCosimo J, Gharrett AJ, Love MS, O'Connell VM, Stanley RD (eds) Biology, assessment, and management of North Pacific rockfishes. Alaska Sea Grant, University of Alaska, Fairbanks, pp 39–57CrossRefGoogle Scholar
  156. Pearcy WG, Stein DL, Hixon MA, Pikitch EK, Barss WH, Starr RM (1989) Submersible observations of deep-reef fishes of Heceta Bank, Oregon. Fish Bull 87:955–965Google Scholar
  157. Peterson TD, Toews HNJ, Robinson CLK, Harrison PJ (2007) Nutrient and phytoplankton dynamics in the Queen Charlotte Islands (Canada) during the summer upwelling seasons of 2001–2002. J Plankton Res 29(3):219–239. doi:10.1093/plankt/fbm010 CrossRefGoogle Scholar
  158. Pitcher TJ (2005) Back-to-the-future: a fresh policy initiative for fisheries and a restoration ecology for ocean ecosystems. Philos Trans: Biol Sci 360(1453):107–121CrossRefGoogle Scholar
  159. Reisewitz S, Estes J, Simenstad C (2006) Indirect food web interactions: sea otters and kelp forest fishes in the Aleutian archipelago. Oecologia 146(4):623–631. doi:10.1007/s00442-005-0230-1 CrossRefGoogle Scholar
  160. Richards LJ (1986) Depth and habitat distributions of three species of rockfish (Sebastes) in British Columbia: observations from the submersible PISCES IV. Environ Biol Fishes 17(1):13–21. doi:10.1007/BF00000397 CrossRefGoogle Scholar
  161. Rick TC, Erlandson JM (eds) (2008) Human impacts on ancient marine ecosystems: a global perpsective. University of California Press, BerkeleyGoogle Scholar
  162. Riedman ML, Estes JA (1990) Sea otter (Enhydra lutris): behavior, ecology, and natural history. US Department of Interior Biological Report 90–14Google Scholar
  163. Robinson CLK, Morrison J, Foreman MGG (2005) Oceanographic connectivity among marine protected areas on the north coast of British Columbia, Canada. Can J Fish Aquat Sci 62(6):1350–1362. doi:10.1139/f05-088 CrossRefGoogle Scholar
  164. Rodil I, Lastra M, López J (2007) Macroinfauna community structure and biochemical composition of sedimentary organic matter along a gradient of wave exposure in sandy beaches (NW Spain). Hydrobiologia 579(1):301–316. doi:10.1007/s10750-006-0443-2 CrossRefGoogle Scholar
  165. Rodríguez SR (2003) Consumption of drift kelp by intertidal populations of the sea urchin Tetrapygus niger on the central Chilean coast: possible consequences at different ecological levels. Mar Ecol Prog Ser 251:141–151. doi:10.3354/meps251141 CrossRefGoogle Scholar
  166. Salomon AK, Shears NT, Langlois TJ, Babcock RC (2008) Cascading effects of fishing can alter carbon flow through a temperate coastal ecosystem. Ecol Appl 18(8):1874–1887. doi:10.1890/07-1777.1 CrossRefGoogle Scholar
  167. Schaal G, Riera P, Leroux C (2009) Trophic significance of the kelp Laminaria digitata (Lamour.) for the associated food web: a between-sites comparison. Estuar Coast Shelf Sci 85(4):565–572. doi:10.1016/j.ecss.2009.09.027 CrossRefGoogle Scholar
  168. Schaal G, Riera P, Leroux C (2010) Trophic ecology in a Northern Brittany (Batz Island, France) kelp (Laminaria digitata) forest, as investigated through stable isotopes and chemical assays. J Sea Res 63(1):24–35. doi:10.1016/j.seares.2009.09.002 CrossRefGoogle Scholar
  169. Schoeninger MJ, DeNiro MJ (1984) Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochim Cosmochim Acta 48(4):625–639. doi:10.1016/0016-7037(84)90091-7 CrossRefGoogle Scholar
  170. Simenstad CA, Duggins DO, Quay PD (1993) High turnover of inorganic carbon in kelp habitats as a cause of δ13C variability in marine food webs. Mar Biol 116(1):147–160. doi:10.1007/BF00350742 CrossRefGoogle Scholar
  171. Simenstad CA, Estes JA, Kenyon KW (1978) Aleuts, sea otters, and alternate stable-state communities. Science 200(4340):403–411CrossRefGoogle Scholar
  172. Sjøtun K, Fredriksen S (1995) Growth allocation in Laminaria hyperborea (Laminariales, Phaeophyceae) in relation to age and wave exposure. Mar Ecol Prog Ser 126:213–222. doi:10.3354/meps126213 CrossRefGoogle Scholar
  173. Sloan NA (2006) Kelp forests. In: Sloan NA (ed) Living marine legacy of Gwaii Haanas V: coastal zone values and management around Haida Gwaii. Gwaii Haanas National Park Reserve and Haida Heritage Site, Queen Charlotte, pp 256–262Google Scholar
  174. Sloan NA, Bartier PM (2000) Living marine legacy of Gwaii Haanas I: marine plant baseline to 1999 and plant-related management issues. Parks Canada-Technical Reports in Ecosystem Science, No. 27, Gwaii Haanas National Park Reserve/Haida Heritage Site, British ColumbiaGoogle Scholar
  175. Soares AG, Schlacher TA, McLachlan A (1997) Carbon and nitrogen exchange between sandy beach clams (Donax serra) and kelp beds in the Benguela coastal upwelling region. Mar Biol 127(4):657–664. doi:10.1007/s002270050056 CrossRefGoogle Scholar
  176. Southon JR, Fedje DW (2003) A post-glacial record of 14C Reservoir Ages for the British Columbia Coast. Can J Archaeol 27:95–11Google Scholar
  177. Steinberg PD (1988) Effects of quantitative and qualitative variation in phenolic compounds on feeding in three species of marine invertebrate herbivores. J Exp Mar Biol Ecol 120(3):221–237. doi:10.1016/0022-0981(88)90003-2 CrossRefGoogle Scholar
  178. Steneck RS, Graham MH, Bourque BJ, Corbett D, Erlandson JM, Estes JA, Tegner MJ (2002) Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ Conserv 29(04):436–459. doi:10.1017/S0376892902000322 CrossRefGoogle Scholar
  179. Steneck RS, Watling L (1982) Feeding capabilities and limitation of herbivorous molluscs: a functional group approach. Mar Biol 68(3):299–319. doi:10.1007/bf00409596 CrossRefGoogle Scholar
  180. Sydeman WJ, Hester MM, Thayer JA, Gress F, Martin P, Buffa J (2001) Climate change, reproductive performance and diet composition of marine birds in the southern California Current system, 1969–1997. Prog in Oceanogr 49(1–4):309–329. doi:10.1016/s0079-6611(01)00028-3 CrossRefGoogle Scholar
  181. Szpak P (2011) Fish bone chemistry and ultrastructure: implications for taphonomy and stable isotope analysis. J Archaeol Sci 38(12):3358–3372. doi:10.1016/j.jas.2011.07.022 CrossRefGoogle Scholar
  182. Szpak P, Gröcke DR, Debruyne R, MacPhee RDE, Guthrie RD, Froese D, Zazula GD, Patterson WP, Poinar HN (2010) Regional differences in bone collagen δ13C and δ15N of Pleistocene mammoths: implications for paleoecology of the mammoth steppe. Palaeogeogr Palaeoclimatol Palaeoecol 286(1–2):88–96. doi:10.1016/j.palaeo.2009.12.009 CrossRefGoogle Scholar
  183. Szpak P, Orchard TJ, Gröcke DR (2009) A Late Holocene vertebrate food web from southern Haida Gwaii (Queen Charlotte Islands, British Columbia). J Archaeol Sci 36(12):2734–2741. doi:10.1016/j.jas.2009.08.013 CrossRefGoogle Scholar
  184. Szpak P, Orchard TJ, McKechnie I, Gröcke DR (2012) Historical ecology of late Holocene sea otters (Enhydra lutris) from northern British Columbia: isotopic and zooarchaeological perspectives. J Archaeol Sci 39(5):1553–1571. doi:10.1016/j.jas.2011.12.006 CrossRefGoogle Scholar
  185. Tallis H (2009) Kelp and rivers subsidize rocky intertidal communities in the Pacific Northwest (USA). Mar Ecol Prog Ser 389:85–96. doi:10.3354/meps08138 CrossRefGoogle Scholar
  186. Thayer JA, Bertram DF, Hatch SA, Hipfner MJ, Slater L, Sydeman WJ, Watanuki Y (2008) Forage fish of the Pacific Rim as revealed by diet of a piscivorous seabird: synchrony and relationships with sea surface temperature. Can J Fish Aquat Sci 65(8):1610–1622. doi:10.1139/F08-076 CrossRefGoogle Scholar
  187. Tolimieri N, Andrews K, Williams G, Katz S, Levin PS (2009) Home range size and patterns of space use by lingcod, copper rockfish and quillback rockfish in relation to diel and tidal cycles. Mar Ecol Prog Ser 380:229–243. doi:10.3354/meps07930 CrossRefGoogle Scholar
  188. Vanderklift M, Wernberg T (2008) Detached kelps from distant sources are a food subsidy for sea urchins. Oecologia 157(2):327–335. doi:10.1007/s00442-008-1061-7 CrossRefGoogle Scholar
  189. Vetter EW (1995) Detritus-based patches of high secondary production in the nearshore benthos. Mar Ecol Prog Ser 120:251–262. doi:10.3354/meps120251 CrossRefGoogle Scholar
  190. Vizzini S, Mazzola A (2002) Stable carbon and nitrogen ratios in the sand smelt from a Mediterranean coastal area: feeding habits and effect of season and size. J Fish Biol 60(6):1498–1510. doi:10.1111/j.1095-8649.2002.tb02443.x CrossRefGoogle Scholar
  191. Wainright SC, Haney JC, Kerr C, Golovkin AN, Flint MV (1998) Utilization of nitrogen derived from seabird guano by terrestrial and marine plants at St. Paul, Pribilof Islands, Bering Sea, Alaska. Mar Biol 131(1):63–71. doi:10.1007/s002270050297 CrossRefGoogle Scholar
  192. Watson JC, Estes JA (2011) Stability, resilience, and phase shifts in rocky subtidal communities along the west coast of Vancouver Island, Canada. Ecol Monogr 81(2):215–239. doi:10.1890/10-0262.1 CrossRefGoogle Scholar
  193. Wernberg T, Connell SD (2008) Physical disturbance and subtidal habitat structure on open rocky coasts: effects of wave exposure, extent and intensity. J Sea Res 59(4):237–248. doi:10.1016/j.seares.2008.02.005 CrossRefGoogle Scholar
  194. Wernberg T, Vanderklift M, How J, Lavery P (2006) Export of detached macroalgae from reefs to adjacent seagrass beds. Oecologia 147(4):692–701. doi:10.1007/s00442-005-0318-7 CrossRefGoogle Scholar
  195. Wiencke C, Fischer G (1990) Growth and stable carbon isotope composition of cold-water macroalgae in relation to light and temperature. Mar Ecol Prog Ser 65(3):283–292CrossRefGoogle Scholar
  196. Williams GD, Levin PS, Palsson WA (2010) Rockfish in Puget Sound: an ecological history of exploitation. Marine Policy 34(5):1010–1020. doi:10.1016/j.marpol.2010.02.008 CrossRefGoogle Scholar
  197. Wittmer MHOM, Auerswald K, Schönbach P, Schäufele R, Müller K, Yang H, Bai YF, Susenbeth A, Taube F, Schnyder H (2010) Do grazer hair and faeces reflect the carbon isotope composition of semi-arid C3/C4 grassland? Basic Appl Ecol 11(1):83–92. doi:10.1016/j.baae.2009.10.007 CrossRefGoogle Scholar
  198. Wolf E (1982) Europe and the people without history. University of California Press, BerkeleyGoogle Scholar
  199. Workman GD, Stanley RD, Olsen N, Rutherford KL (2008) West coast Queen Charlotte Islands groundfish bottom trawl survey, September 11th to October 17th, 2007. Can Manuscr Rep Fish Aquat Sci 2823Google Scholar
  200. Wu J, Calvert SE, Wong CS (1997) Nitrogen isotope variations in the subarctic northeast Pacific: relationships to nitrate utilization and trophic structure. Deep-Sea Res I Oceanogr Res Pap 44(2):287–314. doi:10.1016/S0967-0637(96)00099-4 CrossRefGoogle Scholar
  201. Wyatt ASJ, Waite AM, Humphries S (2010) Variability in isotope discrimination factors in coral reef fishes: implications for diet and food web reconstruction. PLoS One 5(10):e13682. doi:10.1371/journal.pone.0013682 CrossRefGoogle Scholar
  202. Yamanaka KL, Kronlund AR (1997) Inshore rockfish assessment for the west coast of Canada in 1996 and recommended yields for 1997. Can Tech Rep Fish Aquat Sci 2175:80Google Scholar
  203. Yamanaka KL, Lacko LC (2008) Research catch and effort data on nearshore reef-fishes in British Columbia Statistical Area 12. Can Tech Rep Fish Aquat Sci 2803:45Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Paul Szpak
    • 1
  • Trevor J. Orchard
    • 2
  • Anne K. Salomon
    • 3
  • Darren R. Gröcke
    • 4
  1. 1.Department of AnthropologyThe University of Western OntarioLondonCanada
  2. 2.Department of Interdisciplinary StudiesLakehead University OrilliaOrilliaCanada
  3. 3.School of Resource and Environmental ManagementSimon Fraser UniversityBurnabyCanada
  4. 4.Department of Earth SciencesDurham UniversityDurhamUK

Personalised recommendations