Advertisement

Dietary reconstruction in Migration Period Central Germany: a carbon and nitrogen isotope study

  • Corina KnipperEmail author
  • Daniel Peters
  • Christian Meyer
  • Anne-France Maurer
  • Arnold Muhl
  • Bernd R. Schöne
  • Kurt W. Alt
Original Paper

Abstract

This study presents bone collagen carbon and nitrogen isotope data from the Migration Period cemeteries (fifth/sixth century AD) of Obermöllern and Rathewitz in Central Germany. The human average δ 13C ratios of −19.8 ± 0.3 ‰ and δ 15N ratios of 9.6 ± 0.9 ‰ (n = 43) reflect a mixed diet in a temperate C3-based ecosystem without significant difference between the two sites. The average offset between human and faunal δ 13C and δ 15N values indicates a significant contribution of plant food to the human diet that has different isotope ratios from the forage of the animals. It furthermore suggests the influence of land management on the δ 15N values. One adult male from Obermöllern stands out due to his elevated nitrogen isotope ratio, body height, grave goods, and burial position. The collagen isotope data of this study are comparable with data from other central European sites and confirm rather stable communities with moderate variation in the environmental conditions of arable land.

Keywords

Central Germany Cemetery Diet Stable isotopes Carbon Nitrogen 

Notes

Acknowledgments

We thank the State Office for Heritage Management and Archaeology/State Museum of Prehistory of Saxony-Anhalt, especially R. Mischker, for the access to the human skeletal remains. H.-J. Döhle made the faunal samples available and provided archaeozoological determinations. I. Rietig, W. Dindorf, and M. Müller helped substantially with sample preparation and isotope analysis and Uta von Freeden and Friedrich Lüth provided valuable archaeological information. We are grateful to Amy Bogaard and Lynn E. Fisher for the valuable comments on the manuscript. This research was supported by the German Ministry of Education and Science (projects 01 UA 0806A and 01 UA 0806B), which is gratefully acknowledged.

References

  1. Alt KW (2006) Die artifizielle Schädeldeformation bei den Westgermanen. In: Artificial deformation of human head in Eurasian past, vol 5. OPUS: interdisciplinary investigation in archaeology. RAS. Research Institute for Bioarchaeology, Moscow, pp 115–126Google Scholar
  2. Ambrose SH (1993) Isotopic analysis of paleodiets: methodological and interpretive considerations. In: Sandford MK (ed) Investigations of ancient human tissue. Gordon and Breach, Longhorn, pp 59–130Google Scholar
  3. Ambrose SH, Norr L (1993) Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In: Lambert JB, Grupe G (eds) Prehistoric human bone: archaeology at the molecular level. Springer, Berlin, pp 1–37CrossRefGoogle Scholar
  4. Balasse M, Tresset A (2002) Early weaning of Neolithic domestic cattle (Bercy, France) revealed by intra-tooth variation in nitrogen isotope ratios. J Archaeol Sci 29:853–859CrossRefGoogle Scholar
  5. Barrett JH, Orton D, Johnstone C, Harland J, Van Neer W, Ervynck A, Roberts C, Locker A, Amundsen C, Bødger Enghoff I, Hamilton-Dyer S, Heinrich D, Hufthammer AK, Jones AKG, Jonsson L, Makowiecki D, Pope P, O’Connell TC, de Roo T, Richards M (2011) Interpreting the expansion of sea fishing in medieval Europe using stable isotope analysis of archaeological cod bones. J Archaeol Sci 38:1516–1524CrossRefGoogle Scholar
  6. Behm-Blancke (1970) Zur Sozialstruktur der völkerwanderungszeitlichen Thüringer. Ausgrabungen Funde 15:257–271Google Scholar
  7. Bemmann J (2009) Mitteldeutschland im 5. und 6. Jahrhundert. Was ist und ab wann gibt es archäologisch betrachtet typisch Thüringisches? Eine kritische Bestandsaufnahme. In: Castritius H, Geuenich D, Werner M (eds) Die Frühzeit der Thüringer. Archäologie, Sprache, Geschichte. Reallexikon der Germanischen Altertumskunde. Ergänzungsbände 63. de Gruyter, Berlin, New York, pp 63–81Google Scholar
  8. Blaich MC (2009) Bemerkungen zur Speisebeigabe im frühen Mittelalter. In: Heinrich-Tamaska O, Krohn N, Ristow S (eds) Dunkle Jahrhunderte in Mitteleuropa? Tagungsbeiträge der Arbeitsgemeinschaft Spätantike und Frühmittelalter. 1. Rituale und Moden (Xanten, 8. Juni 2006) 2. Möglichkeiten und Probleme archäologisch-naturwissenschaftlicher Zusammenarbeit (Schleswig, 9.-10. Oktober 2007). Studien zu Spätantike und Frühmittelalter 1. Dr. Kovač, Hamburg, pp 27–44Google Scholar
  9. Bocherens H (2000) Preservation of isotopic signals (13C, 15N) in Pleistocene mammals. In: Ambrose SH, Katzenberg AM (eds) Biochemical approaches to paleodietary analysis. Advances in archaeological and museum science 5. Kluwer Academic/Plenum, New York, pp 65–88Google Scholar
  10. Bocherens H, Drucker D (2003) Trophic level isotopic enrichment of carbon and nitrogen in bone collagen: case studies from recent and ancient terrestrial ecosystems. Int J Ostearchaeol 13:46–53CrossRefGoogle Scholar
  11. Bocherens H, Mashkour M, Drucker DG, Moussa I, Billiou D (2006) Stable isotope evidence for palaeodiets in southern Turkmenistan during Historical period and Iron Age. J Archaeol Sci 33:253–264CrossRefGoogle Scholar
  12. Bocherens H, Drucker DG, Bonjean D, Bridault A, Conard NJ, Cupillard C, Germonpré M, Höneisen M, Münzel SC, Napierala H, Patou-Mathis M, Stephan E, Uerpmann H-P, Ziegler R (2011) Isotopic evidence for dietary ecology of cave lion (Panthera spelaea) in North-Western Europe: prey choice, competition and implications for extinction. Quat Int 245:249–261CrossRefGoogle Scholar
  13. Bogaard A, Heaton THE, Poulton P, Merbach I (2007) The impact of manuring on nitrogen isotope ratios in cereals: archaeological implications for reconstruction of diet and crop management practices. J Archaeol Sci 34:335–343CrossRefGoogle Scholar
  14. Brather S (2004) Ethnische Interpretationen in der frühgeschichtlichen Archäologie. Reallexikon für Germanische Altertumskunde. Ergänzungsband 42. de Gruyter Berlin, New YorkGoogle Scholar
  15. Brather S (2005) Alter und Geschlecht zur Merowingerzeit. Soziale Strukturen und frühmittelalterliche Reihengräberfelder. In: Müller J (ed) Alter und Geschlecht in ur- und frühgeschichtlichen Gesellschaften. Tagung Bamberg 20.–21. Februar 2004. Universitätsforschungen zur Prähistorischen Archäologie 126. Habelt, Bonn, pp 157–178Google Scholar
  16. Britton K, Müldner G, Bell M (2008) Stable isotope evidence for salt-marsh grazing in the Bronze Age Severn Estuary, UK: implications for palaeodietary analysis at coastal sites. J Archaeol Sci 35:2111–2118CrossRefGoogle Scholar
  17. Brown TA, Nelson DE, Vogel JS, Southon JR (1988) Improved collagen extraction by modified Longin method. Radiocarbon 30:171–177Google Scholar
  18. Cerling TE, Harris JM (1999) Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120:347–363CrossRefGoogle Scholar
  19. Cheung C, Schroeder H, Hedges REM (2012) Diet, social differentiation and cultural change in Roman Britain: new isotopic evidence from Gloucestershire. J Archaeol Anthropol Sci 4:61–73CrossRefGoogle Scholar
  20. Christlein R (1973) Besitzabstufungen zur Merowingerzeit im Spiegel reicher Grabfunde aus West- und Süddeutschland. Jahrbuch RGZM 20:147–180Google Scholar
  21. DeNiro MJ (1985) Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317:806–809CrossRefGoogle Scholar
  22. Diefendorf AF, Mueller KE, Wing SL, Koch PL, Freeman KH (2010) Global patterns of leaf 13C discrimination and implications for studies of past and future climate. Proc Natl Acad Sci 107:5738–5743CrossRefGoogle Scholar
  23. Droberjar E (2008) Thüringische und langobardische Funde und Befunde in Böhmen. In: Bemmann J, Schmauder M (eds) Kulturwandel in Mitteleuropa. Langobarden–Awaren–Slawen. Akten der Internationalen Tagung in Bonn vom 25. bis 28. Februar 2008. RGK. Kolloquien zur Vor- und Frühgeschichte Band 11. Habelt, Bonn, pp 229–248Google Scholar
  24. Drucker DG, Henry-Gambier D (2005) Determination of the dietary habits of a Magdalenian woman from Saint-Germain-la-Rivie’re in southwestern France using stable isotopes. J Hum Evol 49:19–35CrossRefGoogle Scholar
  25. Drucker DG, Bridault A, Hobson KA, Szuma E, Bocherens H (2008) Can carbon-13 in large herbivores reflect the canopy effect in temperate and boreal ecosystems? Evidence from modern and ancient ungulates. Palaeogeogr Palaeoclimatol Palaeoecol 266:69–82CrossRefGoogle Scholar
  26. Drucker D, Bridault A, Cupillard C, Hujic A, Bocherens H (2011) Evolution of habitat and environment of red deer (Cervus elaphus) during the Late-glacial and early Holocene in eastern France (French Jura and the western Alps) using multi-isotope analysis (δ13C, δ15N, δ18O, δ34S) of archaeological remains. Quat Int 245:268–278CrossRefGoogle Scholar
  27. Dufour E, Bocherens H, Mariotti A (1999) Palaeodietary implications of isotopic variability in Eurasian lacustrine fish. J Archaeol Sci 26:617–627CrossRefGoogle Scholar
  28. Ebersbach R (2002) Von Bauern und Rindern. Eine Ökosystemanalyse zur Bedeutung der Rinderhaltung in bäuerlichen Gesellschaften als Grundlage zur Modellbildung im Neolithikum. Basler Beiträge zur Archäologie 15. Schwabe, BaselGoogle Scholar
  29. Ebersbach R (2007) Glückliche Milch von glücklichen Kühen? Zur Bedeutung der Rinderhaltung in (neolithischen) Wirtschaftssystemen. In: Herrmann B (ed) Beiträge zum Göttinger Umwelthistorischen Kolloquium 2004–2006. Graduiertenkolleg Interdisziplinäre Umweltgeschichte. Universitätsverlag, Göttingen, pp 41–58Google Scholar
  30. Eerkens JW, Berget AG, Bartelink EJ (2011) Estimating weaning and early childhood diet from serial micro-samples of dentin collagen. J Archaeol Sci 38:3101–3111CrossRefGoogle Scholar
  31. Ferrio JP, Voltas J, Araus JL (2003) Use of carbon isotope composition in monitoring environmental changes. Manag Environ Qual Int J 14:82–98CrossRefGoogle Scholar
  32. Fischer A, Olsen J, Richards M, Heinemeier J, Sveinbjornsdottir AE, Bennike P (2007) Coast-inland mobility and diet in the Danish Mesolithic and Neolithic: evidence from stable isotope values of humans and dogs. J Archaeol Sci 34:2125–2150CrossRefGoogle Scholar
  33. Fraser RA, Bogaard A, Heaton T, Charles M, Jones G, Christensen BT, Halstead P, Merbach I, Poulton PR, Sparkes D, Styring AK (2011) Manuring and stable nitrogen isotope ratios in cereals and pulses: towards a new archaeobotanical approach to the inference of land use and dietary practices. J Archaeol Sci 38:2790–2804CrossRefGoogle Scholar
  34. Fuller BT, Richards MP, Mays SA (2003) Stable carbon and nitrogen isotope variations in tooth dentine serial sections from Wharram Percy. J Archaeol Sci 30:1673–1684CrossRefGoogle Scholar
  35. Fuller BT, Molleson TI, Harris DA, Gilmour LT, Hedges REM (2006) Isotopic evidence for breastfeeding and possible adult dietary differences from Late/Sub-Roman Britain. Am J Phys Anthropol 129:45–54CrossRefGoogle Scholar
  36. Fuller BT, Márquez-Grant N, Richards MP (2010) Investigation of diachronic dietary patterns on the islands of Ibiza and Formentera, Spain: evidence from carbon and nitrogen stable isotope ratio analysis. Am J Phys Anthropol 143:512–522CrossRefGoogle Scholar
  37. Grimm P (1953) Zur Erkenntnismöglichkeit gesellschaftlicher Schichtungen im Thüringen des 6.-9. Jahrhunderts. Jahresschrift Mitteldeutsche Vorgeschichte 37:312–322Google Scholar
  38. Hakenbeck S (2009) ‘Hunnic’ modified skulls: physical appearance, identity and the transformative nature of migrations. In: Sayer D, Williams H (eds) Mortuary practices and social identities in the middle ages. Essays in burial archaeology in honour of Heinrich Härke. University of Exeter Press, Exeter, pp 64–80Google Scholar
  39. Hakenbeck S, McManus E, Geisler H, Grupe G, O’Connell TC (2010) Diet and mobility in Early Medieval Bavaria: a study of carbon and nitrogen stable isotopes. Am J Phys Anthropol 143:235–249CrossRefGoogle Scholar
  40. Hamilton J, Hedges REM, Robinson M (2009) Rooting for pigfruit: pig feeding in Neolithic and Iron Age Britain compared. Antiquity 83:998–1011Google Scholar
  41. Hansen CM (2004) Frauengräber im Thüringerreich. Zur Chronologie des 5. und 6. Jahrhunderts n. Chr. Basler Hefte zur Archäologie 2. Archäologie, BaselGoogle Scholar
  42. Heaton THE (1999) Spatial, species, and temporal variations in the 13C/12C ratios of C3 plants: implications for palaeodiet studies. J Archaeol Sci 26:637–649CrossRefGoogle Scholar
  43. Hedges REM (2003) On bone collagen—apatite–carbonate isotopic relationships. In J Ostearchaeol 13:66–79CrossRefGoogle Scholar
  44. Hedges REM, Reynard LM (2007) Nitrogen isotopes and the trophic level of humans in archaeology. J Archaeol Sci 34:1240–1251CrossRefGoogle Scholar
  45. Hedges REM, Clement JG, Thomas DL, O’Connell TC (2007) Collagen turnover in the adult femoral mid-shaft: modeled from anthropogenic radiocarbon tracer measurements. Am J Phys Anthropol 133:808–816CrossRefGoogle Scholar
  46. Holter F (1925) Das Gräberfeld bei Obermöllern aus der Zeit des alten Thüringen. Jahresschrift für die Vorgeschichte der sächsisch-thüringischen Länder 12(1):1–114Google Scholar
  47. Jarnut J (2009) Thüringer und Langobarden im 6. und beginnenden 7. Jahrhundert. In: Castritius H, Geuenich D, Werner M (eds) Die Frühzeit der Thüringer. Archäologie, Sprache, Geschichte. Reallexikon der Germanischen Altertumskunde. Ergänzungsband 63. de Gruyter, Berlin, pp 279–290Google Scholar
  48. Jay M, Fuller BT, Richards MP, Knüsel CJ, King SS (2008) Iron Age breastfeeding practices in Britain: isotopic evidence from Wetwang Slack, East Yorkshire. Am J Phys Anthropol 136:327–337CrossRefGoogle Scholar
  49. Jenkins SG, Partridge ST, Stephenson TR, Farley SD, Robbins CT (2001) Nitrogen and carbon isotope fractionation between mothers, neonates, and nursing offspring. Oecologia 129:336–341Google Scholar
  50. Jim S, Jones V, Ambrose SH, Evershed R (2006) Quantifying dietary macronutrient sources of carbon for bone collagen biosynthesis using natural abundance stable carbon isotope analysis. Br J Nutr 95:1055–1062CrossRefGoogle Scholar
  51. Jørkov MLS, Heinemeier J, Lynnerup N (2007) Evaluating bone collagen extraction methods for stable isotope analysis in dietary studies. J Archaeol Sci 34:1824–1829CrossRefGoogle Scholar
  52. Jørkov MLS, Jørgensen L, Lynnerup N (2010) Uniform diet in a diverse society. Revealing new dietary evidence of the Danish Roman Iron Age based on stable isotope analysis. Am J Phys Anthropol 143:523–533CrossRefGoogle Scholar
  53. Katzenberg MA (2000) Stable isotope analysis: a tool for studying past diet, demography, and life history. In: Katzenberg AM, Saunders SR (eds) Biological anthropology of the human skeleton. Wiley-Liss, New York, pp 305–327Google Scholar
  54. Kellner CM, Schoeninger MJ (2007) A simple carbon isotope model for reconstructing prehistoric human diet. Am J Phys Anthropol 133:1112–1127CrossRefGoogle Scholar
  55. Kleemann J (2010) Frühmittelalterliche Bestattungen als Projektionen kontextueller Identitäten. In: Pohl W, Mehofer M (eds) Archaeology of identity—Archäologie der Identität. Österreichische Akademie der Wissenschaften, Philosophisch-Historische Klasse, Denkschrift 406 = Forschungen zur Geschichte des Mittelalters 17. Verl Österr Akad. Wissenschaften Wien, pp 79–92Google Scholar
  56. Knipper C, Maurer A-F, Peters D, Meyer C, Brauns M, Galer SG, von Freeden U, Schöne B, Alt KW (2012) Mobility in Thuringia or mobile Thuringians: a strontium isotope study from early Medieval Central Germany. In: Schier W, Burger J, Kaiser E (eds) Migrations in prehistory and early history. Stable isotopes and population genetics. Berlin studies of the ancient world. de Gruyter, Berlin, pp 293–317Google Scholar
  57. Kohn MJ (2010) Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proc Natl Acad Sci 107:19691–19695CrossRefGoogle Scholar
  58. Le Huray JD, Schutkowski H (2005) Diet and social status during the La Tene period in Bohemia: carbon and nitrogen stable isotope analysis of bone collagen from Kutna Hora-Karlov and Radovesice. J Anthropol Archaeol 24:135–147CrossRefGoogle Scholar
  59. Lecomte N, Alstrøm Ø, Ehrich D, Fuglei E, Ims RA, Yoccoz NG (2011) Intrapopulation variability shaping isotope discrimination and turnover: experimental evidence in arctic foxes. PLOS One 6(6):e21357CrossRefGoogle Scholar
  60. Lee-Thorp JA (2008) On isotopes and old bones. Archaeometry 50:925–950CrossRefGoogle Scholar
  61. Lightfoot E, Stevens RE (2012) Stable isotope investigations of charred barley (Hordeum vulgare) and wheat (Triticum spelta) grains from Danebury Hillfort: implications for palaeodietary reconstructions. J Archaeol Sci 39:656–662CrossRefGoogle Scholar
  62. Longin R (1971) New method of collagen extraction for radiocarbon dating. Nature 230:241–242CrossRefGoogle Scholar
  63. Lynch AH, Hamilton J, Hedges REM (2008) Where the wild things are: aurochs and cattle in England. Antiquity 82:1025–1039Google Scholar
  64. Maurer A-F, Galer SJG, Knipper C, Beierlein L, Nunn EV, Peters D, Tütken T, Alt KW, Schöne B (2012) Bioavailable 87Sr/86Sr in different environmental samples—effects of anthropogenic contamination and implications for isoscapes in past migration studies. Sci Total Environ 433:216–229CrossRefGoogle Scholar
  65. McGlynn G (2007) Using 13C-, 15N- and 18O stable isotope analysis of human bone tissue to identify transhumance, high altitude habitation and reconstruct palaeodiet for the early medieval Alpine population at Volders, Austria. Dissertation, Universität München. Available at http://edoc.ub.uni-muenchen.de/7327/1/McGlynn_George.pdf.pdf. Accessed 7 June 2012
  66. McKinney CR, McCrea JM, Epstein S, Allen HA, Urey HC (1950) Improvements in mass-spectrometers for the measurement of small differences in isotope abundance ratios. Rev Sci Instrum 2:724–730CrossRefGoogle Scholar
  67. Merah O, Deléens E, Teulat B, Monneveux P (2002) Association between yield and carbon isotope discrimination value in different organs of durum wheat under drought. J Agron Crop Sci 188:426–434CrossRefGoogle Scholar
  68. Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between [delta]15N and animal age. Geochim Cosmochim Acta 48:1135–1140CrossRefGoogle Scholar
  69. Müldner G, Richards MP (2005) Fast or feast: reconstructing diet in later medieval England by stable isotope analysis. J Archaeol Sci 32:39–48CrossRefGoogle Scholar
  70. Müller C (1961) Das anthropologische Material zur Bevölkerungsgeschichte von Obermöllern. Praehist Z [?] 39:115–142CrossRefGoogle Scholar
  71. Müller H-H (1980) Zur Kenntnis der Haustiere der Völkerwanderungszeit im Mittelelbe-Saale-Gebiet. Z Archäol 14:99–119Google Scholar
  72. Mulville J, Madgwick R, Stevens R, O’Connell TC, Craig OE, Powell A, Sharples N, Parker Pearson M (2009) Isotopic analysis of faunal material from South Uist, Western Isles, Scotland. J N Atl 2:51–59Google Scholar
  73. Nehlich O, Richards MP (2009) Establishing collagen quality criteria for sulphur isotope analysis of archaeological bone collagen. Archaeol Anthropol Sci 1:59–75CrossRefGoogle Scholar
  74. Nitsch KE, Humphrey LT, Hedges REM (2010) The effect of parity status on δ15N: looking for the “pregnancy effect” in 18th and 19th century London. J Archaeol Sci 37:3191–3199CrossRefGoogle Scholar
  75. Nitsch EK, Humphrey LT, Hedges REM (2011) Using stable isotope analysis to examine the effect of economic change on breastfeeding practices in Spitalfields, London, UK. Am J Phys Anthropol 146:619–628CrossRefGoogle Scholar
  76. Noe-Nygaard N, Price DT, Hede SU (2005) Diet of aurochs and early cattle in southern Scandinavia: evidence from 15N and 13C stable isotopes. J Archaeol Sci 32:855–871CrossRefGoogle Scholar
  77. Oelze VM, Siebert A, Nicklisch N, Meller H, Dresely V, Alt KW (2011) Early Neolithic diet and animal husbandry: stable isotope evidence from three Linearbandkeramik (LBK) sites in Central Germany. J Archaeol Sci 38:270–279CrossRefGoogle Scholar
  78. Ogrinc N, Budja M (2005) Paleodietary reconstruction of a Neolithic population in Slovenia: a stable isotope approach. Chem Geol 218:103–116CrossRefGoogle Scholar
  79. Pate DF (1994) Bone chemistry and paleodiet. J Archaeol Method Theory 1:161–209CrossRefGoogle Scholar
  80. Paul D, Skrzypek G, Fórizs I (2007) Normalization of measured stable isotopic compositions to isotope reference scales—a review. Rapid Commun Mass Spectrom 21:3006–3014CrossRefGoogle Scholar
  81. Pearson JA, Hedges REM, Molleson TI, Özbek M (2010) Exploring the relationship between weaning and infant mortality: an isotope case study from Aşıklı Höyük and Çayönü Tepesi. Am J Phys Anthropol 143:448–457CrossRefGoogle Scholar
  82. Phillips D, Koch PL (2002) Incorporating concentration dependence in stable isotope mixing model. Oecologia 130:114–125Google Scholar
  83. Phillips DL, Newsome SD, Gregg JW (2005) Combining sources in stable isotope mixing models: alternative methods. Oecologia 144:520–527CrossRefGoogle Scholar
  84. Pohl W (2005) Geschichte und Identität im Langobardenreich. In: Pohl W, Erhard P (eds) Die Langobarden. Herrschaft und Identität. Österr. Akad. Wiss., Phil.-Hist. Kl., Denkschriften 329 = Forschungen zur Geschichte des Mittelalters 9. Verl Österr Akad. Wissenschaften Wien, pp 555–566Google Scholar
  85. Pohl W (2008) Migration und Ethnogenesen der Langobarden aus Sicht der Schriftquellen. In: Bemmann J, Schmauder M (eds) Kulturwandel in Mitteleuropa. Langobarden–Awaren–Slawen. Akten der Internationalen Tagung in Bonn vom 25. bis 28. Februar 2008. RGK. Kolloquien zur Vor- und Frühgeschichte 11. Dr. Rudolf Habelt, Bonn, pp 1–12Google Scholar
  86. Pratt RM, Putnam RJ, Ekins JR, Edwards PJ (1986) Use of habitat by free-ranging cattle and ponies in the New Forest, Southern England. J Appl Ecol 23:539–557CrossRefGoogle Scholar
  87. Privat KL, O’Connell TC, Richards MP (2002) Stable isotope analysis of human and faunal remains from the Anglo-Saxon cemetery at Berinsfield, Oxfordshire: dietary and social implications. J Archaeol Sci 29:779–790CrossRefGoogle Scholar
  88. Quast D (2010) Die Langobarden in Mähren und im nördlichen Niederösterreich—Ein Diskussionsbeitrag. In: Pohl W, Mehofer M (eds) Archaeology of Identity—Archäologie der Identität. Österreichische Akademie der Wissenschaften Philosophisch-Historische Klasse, Denkschrift 406 = Forschungen zur Geschichte des Mittelalters 17. Verl Österr Akad. Wissenschaften Wien, pp 93–110Google Scholar
  89. Rheinland L (ed) (2008) Die Langobarden. Das Ende der Völkerwanderungszeit. Katalog zur Ausstellung im Rheinischen Landesmuseum Bonn 22.8.2008–11.1.2009. Primus, BonnGoogle Scholar
  90. Robbins CT, Felicetti LA, Sponheimer M (2005) The effect of dietary protein quality on nitrogen isotope discrimination in mammals and birds. Oecologia 144(4):534–540CrossRefGoogle Scholar
  91. Robbins CT, Felicetti LA, Florin ST (2010) The impact of protein quality on stable nitrogen isotope ratio discrimination and assimilated diet estimation. Oecologia 162:571–579CrossRefGoogle Scholar
  92. Robson H, Andersen S, Craig OE, Fischer A, Glykou A, Hartz S, Lübke H, Schmölcke U, Heron C (2012) Carbon and nitrogen isotope signals in eel bone collagen from Mesolithic and Neolithic sites in northern Europe. J Archaeol Sci 39:2003–2011CrossRefGoogle Scholar
  93. Schafberg R, Schwarz W (2001) Eine Fremde im Thüringerreich. Eine Frau mit deformiertem Schädel aus Obermöllern. In: Meller H (ed) Schönheit, Macht und Tod. 120 Funde aus 120 Jahren Landesmuseum für Vorgeschichte Halle. Mayr Miesbach, Halle/Saale, pp 126–127Google Scholar
  94. Schmidt B (1974) Die Langobarden während der römischen Kaiserzeit und langobardisch-thüringische Beziehungen im 5./6. Jahrhundert. In: Problemi attuali di scienzaa e di cultura. Atti del convegno internazionale sul tema: A civiltà dei longobardi in Europa (Roma 24.–26. maggio 1971) (Cividale del Friuli, 27.–28. Maggio 1971). Accademiia nazionale dei lincei 189:79–84Google Scholar
  95. Schmidt B (1975) Die späte Völkerwanderungszeit in Mitteldeutschland. Katalog (Nord- und Ostteil). Veröffentlichungen des Landesmuseums für Vorgeschichte in Halle 29. Deutscher Verlag der Wissenschaften, BerlinGoogle Scholar
  96. Schmidt B (1996) Das Königreich der Thüringer und seine Eingliederung in das Frankenreich. In: Wieczorek A, Périn PV, Welck K, Menghin W (eds) Die Franken. Wegbereiter Europas. Vor 1500 Jahren: König Chlodwig und seine Erben. Katalog-Handbuch. Philipp von Zabern, Mainz, pp 285–297Google Scholar
  97. Schmidt B (2002) Obermöllern. In: Jankuhn H, Beck H (eds) Reallexikon der Germanischen Altertumskunde 21, 2nd edn. de Gruyter, Berlin, pp 486–489Google Scholar
  98. Schnyder H, Schwertl M, Auerswald K, Schäufele R (2006) Hair of grazing cattle provides an integrated measure of the effects of site conditions and interannual weather variability on d13C of temperate humid grassland. Glob Chang Biol 12:1315–1329CrossRefGoogle Scholar
  99. Schoeninger MJ, DeNiro MJ (1984) Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochim Cosmochim Acta 43:625–638CrossRefGoogle Scholar
  100. Schott L (1961) Deformierte Schädel aus der Merowingerzeit in anthropologischer Sicht. In: Schmidt B (ed) Die späte Völkerwanderungszeit in Mitteldeutschland. Veröffentlichungen des Landesmuseums für Vorgeschichte in Halle 18. Niemeyer, Berlin, pp 209–236Google Scholar
  101. Schutkowski H, Herrmann B, Wiedemann F, Bocherens H, Grupe G (1999) Diet, status and decomposition at Weingarten: trace element and isotope analyses on Early Medieval skeletal material. J Archaeol Sci 26:675–685CrossRefGoogle Scholar
  102. Schweissing MM, Grupe G (2000) Local or nonlocal? A research of strontium isotope ratios of teeth and bones on skeletal remains with artificial deformed skulls. Anthropol Anz 58:99–103Google Scholar
  103. Sellen DW (2001) Comparison of infant feeding patterns reported for nonindustrial populations with current recommendations. J Nutr 131:2707–2715Google Scholar
  104. Siegmund F (2010) Die Körpergröße der Menschen in der Ur- und Frühgeschichte Mitteleuropas und ein Vergleich ihrer anthropologischen Schätzmethoden. Books on Demand, NorderstedtGoogle Scholar
  105. Springer M (2005) Thüringer. Historisches. § 2–3. In: Beck H, Geuenich D, Steuer H (eds) Reallexikon der Germanischen Altertumskunde 30, 2nd edn. De Gruyter, Berlin, pp 521–530Google Scholar
  106. Steuer H (2003) Pferdegräber. In: Beck H, Geuenich D, Steuer H (eds) Reallexikon der Germanischen Altertumskunde 23, 2nd edn. De Gruyter, Berlin, pp 50–96Google Scholar
  107. Stevens R, Lightfoot E, Hamilton J, Cunliffe B, Hedges R (2010) Stable isotope investigations of the Danebury Hillfort pit burials. Oxf J Archaeol 29:407–428CrossRefGoogle Scholar
  108. Strott N (2006) Paläodemographie frühmittelalterlicher Bevölkerungen Altbaierns—Diachrone und allopatrische Trends. Dissertation, Universität München. Available at http://edoc.ub.uni-muenchen.de/6839/1/Strott_Nadja.pdf. Accessed 7 June 2012
  109. Teichert M (1964) Die Tierreste aus der spätlatènezeitlichen Siedlung von Schönburg, Kreis Naumburg. Wissenschaftliche Zeitschrift der Martin-Luther-Universität Halle-Wittenberg Gesellschafts- und sprachwissenschaftliche Reihe 13:845–864Google Scholar
  110. Tejral J (2005) Zur Unterscheidung des vorlangobardischen und elbgermanisch-langobardischen Nachlasses. In: Pohl W, Erhart P (eds) Die Langobarden. Herrschaft und Identität. Österr. Akad. Wiss. Phil.-Hist. Kl., Denkschr. 329 = Forsch. Gesch. Mittelalters 9. Verlag der Österreichischen Akademie der Wissenschaften, Wien, pp 103–200Google Scholar
  111. Theune C (2005) Thüringer. Archäologisches. § 5. In: Jankuhn H, Beck H (eds) Reallexikon der Germanischen Altertumskunde 30, 2nd edn. de Gruyter, Berlin, pp 535–544Google Scholar
  112. Theune C (2008) Methodik der ethnischen Deutung. Überlegungen zur Interpretation der Grabfunde aus dem thüringischen Siedlungsgebiet. In: Brather S (ed) Zwischen Spätantike und Frühmittelalter. Archäologie des 4. bis 7. Jahrhunderts im Westen. Ergänzungsbände des Reallexikons der Germanischen Altertumskunde 57. de Gruyter, Berlin, New York, pp 211–233Google Scholar
  113. Tieszen LL, Fagre T (1993) Effect of diet quality and composition on the isotopic composition of respiratory CO2, bone collagen, bioapatite, and soft tissues. In: Lambert JB, Grupe G (eds) Prehistoric human bone. Archaeology at the molecular level. Springer, Berlin, pp 121–155CrossRefGoogle Scholar
  114. Tütken T, Knipper C, Alt KW (2008) Mobilität und Migration im archäologischen Kontext: Informationspotential von Multi-Element-Isotopenanalysen (Sr, Pb, O). In: Bemmann J, Schmauder M (eds) Langobarden–Awaren–Slawen. Kulturwandel in Mitteleuropa. Akten der Internationalen Tagung in Bonn vom 25. bis 28 Februar 2008. Kolloquien zur Vor- und Frühgeschichte 11. Habelt, Bonn, pp 13–42Google Scholar
  115. van der Merwe N, Medina E (1991) The canopy effect, carbon isotope ratios and foodwebs in Amazonia. J Archaeol Sci 18:249–259CrossRefGoogle Scholar
  116. van Klinken GJ (1999) Bone collagen quality indicators for palaeodietary and radiocarbon measurements. J Archaeol Sci 26:687–695CrossRefGoogle Scholar
  117. von Freeden U (1996) Die Bajuwaren—Nachbarn der Franken. In: Wieczorek A (ed) Die Franken. Wegbereiter Europas. Vor 1500 Jahren: König Chlodwig und seine Erben. Philipp von Zabern, Mainz, pp 308–318Google Scholar
  118. Waters-Rist AL, Katzenberg AM (2010) The effect of growth on stable nitrogen isotope ratios in subadult bone collagen. Int J Osteoarchaeol 20:172–191Google Scholar
  119. Waters-Rist AL, Bazaliiskii VI, Weber AW, Katzenberg AM (2011) Infant and child diet in Neolithic hunter–fisher–gatherers from Cis-Baikal, Siberia: intra-long bone stable nitrogen and carbon isotope ratios. Am J Phys Anthropol 146:225–241CrossRefGoogle Scholar
  120. Werner M (1999) Thüringen, Thüringer. In: Lexikon des Mittelalters 8. Stadt (Byzantisches Reich) bis Werl. Verlag J. B. Metzler, Stuttgart, Weimar, pp 747–757Google Scholar
  121. Willerding U (2003) Die Landwirtschaft im frühen Mittelalter (6.-10. Jh.). Ackerbau. In: Benecke N, Donat P, Gringmuth-Dallmer E, Willerding U (eds) Frühgeschichte der Landwirtschaft in Deutschland. Beiträge zur Ur- und Frühgeschichte Mitteleuropas 14. Beier & Beran, Langenweissbach, pp 151–172Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Corina Knipper
    • 1
    Email author
  • Daniel Peters
    • 2
  • Christian Meyer
    • 1
  • Anne-France Maurer
    • 3
  • Arnold Muhl
    • 4
  • Bernd R. Schöne
    • 3
  • Kurt W. Alt
    • 1
  1. 1.Institute of AnthropologyUniversity of MainzMainzGermany
  2. 2.Institute of Prehistoric ArchaeologyFree University of BerlinBerlinGermany
  3. 3.Earth System Science Research Center, Department of Applied and Analytical Paleontology, Institute of GeosciencesUniversity of MainzMainzGermany
  4. 4.State Office for Heritage Management and Archaeology/State Museum of Prehistory of Saxony-AnhaltHalle (Saale)Germany

Personalised recommendations