Archaeological and Anthropological Sciences

, Volume 4, Issue 3, pp 185–197 | Cite as

Multi-technique characterization of dyes in ancient Kaitag textiles from Caucasus

  • Federica Pozzi
  • Gianluca Poldi
  • Silvia Bruni
  • Eleonora De Luca
  • Vittoria Guglielmi
Original Paper


Kaitag textiles, named after the Kaitag district of Southwest Daghestan, Russia, where it is being manufactured, are a unique embroidered textile art form. They were used by families on special occasions such as the birth, marriage or death of one of their members and were thus passed down from generation to generation as family heirlooms. Today, only a few hundred of these precious antique specimens can still be found, and surviving examples are mostly from the seventeenth and eighteenth centuries. In this article, an extensive work for the scientific analysis of Kaitag textiles is presented as the logical continuance and updating of the investigations performed by thin layer chromatography almost two decades ago. A multi-technique approach involving the combined use of micro-invasive and nondestructive techniques suitable for in situ analyses was used, aiming to identify the colourants of Kaitag textiles and the inks employed for the underlying drawing. Analyses were performed by high-performance liquid chromatography, surface-enhanced Raman spectroscopy, scanning electron microscopy combined with energy dispersive X-ray analysis, as well as visible reflectance spectroscopy and X-ray fluorescence. In addition, infrared reflectography and ultraviolet fluorescence were employed to visualise underlying drawings and possible restorations. Corrosion phenomena observed in brown- and black-dyed areas were also investigated.


Kaitag textiles Organic dyes HPLC SERS Vis–RS SEM-EDX IR reflectography 


  1. Bacci M (2000) UV-VIS-NIR, FT-IR, and FORS spectroscopies. In: Ciliberto E, Spoto G (eds) Modern analytical methods in art and archaeology. Springer, New York, pp 321–360Google Scholar
  2. Baker CA (1983) A comparison of drawing inks using ultraviolet and infrared light examination techniques. In: England PA, van Zelst L (eds) Application of science in examination of works of art, proceedings of the seminar. Research Laboratory, Museum of Fine Arts, Boston, pp 159–163Google Scholar
  3. Binant C (1990) Application de la microspectroscopie de réfléxion diffuse à l’analyse de pigments rouges organiques. In: Pigments et colorants. Éditions du CNRS, Paris, pp 153–162Google Scholar
  4. Bisulca C, Picollo M, Bacci M, Kunzelman D (2008) UV-vis-NIR reflectance spectroscopy of red lakes in paintings. In: 9th International Conference on NDT of Art (Jerusalem, 25–30 May 2008). JerusalemGoogle Scholar
  5. Brosseau CL, Gambardella A, Casadio F, Grzycawz CM, Wouters J, Van Duyne RP (2009) Ad-hoc surface-enhanced Raman spectroscopy methodologies for the detection of artist dyestuffs: thin layer chromatography-surface enhanced Raman spectroscopy and in situ on the fiber analysis. Anal Chem 81:3056–3062CrossRefGoogle Scholar
  6. Bruni S, Caglio S, Guglielmi V, Poldi G (2008) The joined use of n.i. spectroscopic analyses—FTIR, Raman, visible Reflectance Spectrometry and EDXRF—to study drawings and illuminated manuscripts. Appl Phys A-Mater 92:103–108CrossRefGoogle Scholar
  7. Bruni S, Guglielmi V, Pozzi F (2010) Surface-enhanced Raman spectroscopy (SERS) on silver colloids for the identification of ancient textile dyes: tyrian purple and madder. J Raman Spectrosc 41:175–180Google Scholar
  8. Bruni S, Guglielmi V, Pozzi F (2011a) Historical organic dyes: a surface-enhanced Raman spectra (SERS) database on Ag Lee–Meisel colloids aggregated by NaClO4. J Raman Spectrosc 42:1267–1281CrossRefGoogle Scholar
  9. Bruni S, Guglielmi V, Pozzi F, Mercuri AM (2011b) Surface-enhanced Raman spectroscopy (SERS) on silver colloids for the identification of ancient textile dyes. Part II: pomegranate and sumac. J Raman Spectrosc 42:465–473CrossRefGoogle Scholar
  10. Casadio F, Leona M, Lombardi JR, Van Duyne R (2010) Identification of organic colorants in fibers, paints, and glazes by surface enhanced Raman spectroscopy. Acc Chem Res 43:782–791CrossRefGoogle Scholar
  11. Chenciner R (1993) Kaitag. Textile art from Daghestan. Textile Art Publications, LondonGoogle Scholar
  12. Colombini MP, Andreotti A, Baraldi C, Degano I, Lucejko JJ (2007) Colour fading in historical paint micro-samples. Microchim Acta 162:361–370Google Scholar
  13. Hofenk de Graaf JH (2004) The colourful past. Origins, chemistry and identification of natural dyestuffs. With contributions from Wilma G. Th. Roelofs and Maarten R. van Bommel. Abegg-Stiftung and Archetype Publications Ltd., p 321Google Scholar
  14. Hahn O, Valzer W, Kanngiesse B, Beckhoff B (2004) Characterization of iron-gall inks in historical manuscripts and music compositions using X-ray fluorescence spectrometry. X-ray Spectrom 33:234–239CrossRefGoogle Scholar
  15. Hunt D, Chenchiner R (2006) Colour symbolism in the folk literature and textile tradition of the Caucasus. Opt Laser Technol 38:458–465CrossRefGoogle Scholar
  16. Joosten I, van Bommel MR, Hofmann-de Keijzer R, Reschreiter H (2006) Micro analysis on Hallstatt textiles: colour and condition. Microchim Acta 155:169–174CrossRefGoogle Scholar
  17. Jurasekova Z, del Puerto E, Bruno G, García-Ramos JV, Sanchez-Cortes S, Domingo C (2010) Extractionless non-hydrolysis surface-enhanced Raman spectroscopic detection of historical mordant dyes on textile fibers. J Raman Spectrosc 41:1455–1461CrossRefGoogle Scholar
  18. Karapanagiotis L, Valianou L, Daniilia S, Chryssoulakis Y (2007) Organic dyes in byzantine and post-byzantine icons from Chalkidiki (Greece). J Cult Herit 8:294–298CrossRefGoogle Scholar
  19. Kirby J (1977) A spectrophotometric method for the identification of lake pigment dyestuffs. Natl Gallery Tech Bull 4:35–44Google Scholar
  20. Kolar J, Stolfa A, Strlič M, Pompe M, Pihlar B, Budnar M, Simčič RB (2006) Historical iron gall ink containing documents—properties affecting their condition. Anal Chim Acta 555:167–174CrossRefGoogle Scholar
  21. Körtum G (1969) Reflectance spectroscopy. Principles, methods, application. Springer, BerlinGoogle Scholar
  22. Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86:3391–3395CrossRefGoogle Scholar
  23. Leona M, Lombardi JR (2007) Identification of berberine in ancient and historical textiles by surface-enhanced Raman scattering. J Raman Spectrosc 38:853–858CrossRefGoogle Scholar
  24. Leona M, Winter J (2001) Fiber optics reflectance spectroscopy: a unique tool for the investigation of paintings. Stud Conserv 46:153–162CrossRefGoogle Scholar
  25. Leona M, Stenger J, Ferloni E (2006) Application of surface-enhanced Raman scattering techniques to the ultrasensitive identification of natural dyes in works of art. J Raman Spectrosc 37:981–992CrossRefGoogle Scholar
  26. Leona M, Decuzzi P, Kubic TA, Gates G, Lombardi JR (2011) Nondestructive identification of natural and synthetic organic colorants in works of art by surface enhanced Raman scattering. Anal Chem 83:3990–3993CrossRefGoogle Scholar
  27. Poldi G (2010) Analisi scientifiche su tappeti e altri tessili: note introduttive e prospettive di ricerca. In: Tabibnia M, Marchesi T, Piccoli E (eds) Crivelli e l'arte tessile. Electa, Milano, pp 155–179Google Scholar
  28. Poldi G (2011) Coloranti in tappeti cinesi. Il ruolo della spettrometria in riflettenza. In: Intrecci cinesi. Antica arte tessile (XV-XIX secolo). Moshe Tabibnia, Milano, pp 82–99Google Scholar
  29. Poldi G, Bonizzoni L (2008) Di mescole e di strati. Precisazioni sui pigmenti della pala di San Zeno di Mantegna secondo le analisi integrate ED-XRF e vis-RS. In: Pesci F, Toniolo L (eds) La Pala di San Zeno, la Pala Trivulzio. Conoscenza, conservazione, monitoraggio, Atti della giornata di studi (Verona, Palazzo della Gran Guardia, 5 dicembre 2006). Marsilio, Venezia, pp 104–119Google Scholar
  30. Sanyova J (2008) Mild extraction of dyes by hydrofluoric acid in routine analysis of textiles: a model study on the decomposition of natural dyes. Microch J 85:174–182Google Scholar
  31. Scaramuzza C (2010) Kaitag, arte per la vita. Tessuti ricamati dal Daghestan. Silvana Editoriale, Cinisello BalsamoGoogle Scholar
  32. Schanda J (2007) Colorimetry: understanding the CIE system. Wiley, HobokenGoogle Scholar
  33. Schweppe H (1993) Handbuch der naturfarbstoffe. Landsberg/Lech, GermanyGoogle Scholar
  34. Taylor GW (1983) Detection and identification of dyes on Anglo-Scandinavian textiles. Stud Conserv 28:153–160CrossRefGoogle Scholar
  35. Van Bommel MR, Vanden Berghe I, Wallert AM, Boitelle R, Wouters J (2007) High-performance liquid chromatography and non-destructive three-dimensional fluorescence analysis of early synthetic dyes. J Chromatogr A 1157:260–272CrossRefGoogle Scholar
  36. Verri G, Tanimoto S, Higgitt C (2010) Inks and washes. In: Ambers J, Higgitt C, Saunders D (eds) Italian Renaissance drawings. technical examination and analysis. Archetype and the British Museum, London, pp 57–75Google Scholar
  37. Walton Rogers P (1999) Dyes in the Hochdorf Textiles. In: Banck-Burgess J (ed) Hochdorf IV, Die Textilfunde aus dem späthallstattzeitlichen Fürstengrab von Eberdingen-Hochdorf (Kreis Ludwigsburg) und weitere Grabtextilien aus hallstatt- und laténezeitlichen Kulturgruppen. Forschungen und Berichte zur Vor- und Frühgeschichte Baden-Württembergs 70. Theiß, Stuttgart, pp 240–245Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Federica Pozzi
    • 1
  • Gianluca Poldi
    • 2
  • Silvia Bruni
    • 1
  • Eleonora De Luca
    • 1
  • Vittoria Guglielmi
    • 1
  1. 1.Dipartimento di Chimica Inorganica, Metallorganica e Analitica “Lamberto Malatesta”Università degli Studi di MilanoMilanItaly
  2. 2.Dipartimento di Lettere, Arti e MultimedialitàUniversità degli Studi di BergamoBergamoItaly

Personalised recommendations