Fruit and seed biomineralization and its effect on preservation

  • Erwan Messager
  • Aïcha Badou
  • François Fröhlich
  • Brigitte Deniaux
  • David Lordkipanidze
  • Pierre Voinchet
Original Paper


Mineralised fruits and seeds are frequently found in archaeological sediments but their chemical nature has not been often examined. The nature and the origin of these archaeobotanical remains have to be investigated to understand their taphonomic history. Fruits or seeds can be mineralised not only by replacement mineralisation but also by biomineralisation during the plant life. The mineral components of three fossil fruits sampled on the Pleistocene site of Dmanisi were analysed and compared with their modern analogues. Analyses were carried out by means of an environmental scanning electron microscope, equipped with an energy dispersive X-ray device and by means of a Fourier transform infrared spectrometer. Biogenic carbonates and/or biogenic silica were identified in the fossil and modern fruits of some taxa. Comparison between fossil and modern specimens has shown that molecular reorganisation occurred in carbonate and in biogenic silica during fossilisation, through diagenetic processes. The resulting stable mineral structures confer an exceptional preservation to fruits in sediments. Taking into account these taphonomic specificities (transformation and differential preservation), the chronological and palaeoenvironmental aspects of the mineralised fruits are discussed.


Fruit remains Biomineralisation Taphonomy X-ray EDS Scanning electronic environmental microscopy Fourier transform infrared spectroscopy 



This study was prepared in collaboration with the Georgian National Museum, the French Museum of Natural History (MNHN) and the René Ginouvès Institute for Archaeology and Anthropology (MAE). We wish to express our gratefulness to Lucy Mc Cobb for her comments on the paper and the English editing which significantly helped to improve the manuscript. This research was completed during a postdoctoral project coordinated by Stéphanie Thiébault and supported by the ‘Ile de France regional council’. We thank Dorian Q. Fuller and two anonymous reviewers for their constructive suggestions, which greatly improved our paper.


  1. Berndt ME, Seyfried WE (1999) Rates of aragonite conversion to calcite in dilute aqueous fluids at 50 to 100°C: experimental calibration using Ca-isotope attenuation. Geochim Cosmochim Acta 63:373–381CrossRefGoogle Scholar
  2. Briggs DEG, Wilby PR (1996) The role of the calcium carbonate calcium phosphate switch in the mineralization of soft-bodied fossils. J Geol Soc London 153:665–668CrossRefGoogle Scholar
  3. Carlson WD (1983) The polymorphs of CaCO3 and the aragonite-calcite transformation. In: Reeder RJ (ed) Carbonates: Mineralogy and Chemistry, Mineral. Soc. Am., Rev. Mineral 11:191–225Google Scholar
  4. Cowan MR, Gabel ML, Jahren AH, Tieszen LL (1997) Growth and biomineralization of Celtis occidentalis (Ulmaceae) pericarps. Am Midl Nat 137(2):266–273CrossRefGoogle Scholar
  5. Deniaux B (2002) La microscopie électronique à Balayage environnementale. In: Miskovsky JC (ed) Géologie de la Préhistoire Géopré-Press Universitaire de Perpignan, pp 589–599Google Scholar
  6. Dzaparidze V, Bosinski G, Bugianisvili T, Gabunia L, Justus A, Klopotovskaja N, Kvavadze E, Lordkipanidze D, Maisuradze G, Mgeladze N, Nioradze M, Pavlenishvili E, Schmincke H-U, Sologasvili D, Tusabramisvili D, Tvalcrelidze M, Vekua A (1989) Der alfipaläolithische Fundplatz Dmanisi in Georgian (Kaukasus). Jahrbuch des Römisch-Germanischen Zentralmuseums Mainz 36:67–116Google Scholar
  7. Ferring CR, Lordkipanidze D, Berna F, Ohms O (2008) Geology and formation processes at Dmanisi in the Georgian Caucasus. Abstracts of the 73rd Annual Meeting, Society for American Archaeology, pp 195Google Scholar
  8. Fröhlich F (1989) Deep-sea biogenic silica: new structural and analytical data from infrared analysis-geological implications. Terra Nova 1:267–273CrossRefGoogle Scholar
  9. Fröhlich F, Gendron-Badou A (2002) La spectroscopie infrarouge, un outil polyvalent. In: Miskovsky J-C (ed) Géologie de la Préhistoire, AEEGP, éditeur. Paris. pp 662–677Google Scholar
  10. Gabunia L, Vekua A, Lordkipanidze D, Swisher CC III, Ferring R, Justus A, Nioradze M, Tvalcrelidze M, Anton SC, Bosinski G, Jöris O, de Lumley MA, Majsuradze G, Mouskhelishvili A (2000a) Earliest Pleistocene hominid cranial remains from Dmanisi, Republic of Georgia: taxonomy, geological setting, and age. Science 288:1019–1025CrossRefGoogle Scholar
  11. Gabunia L, Vekua A, Lordkipanidze D (2000b) The environmental contexts of early human occupation of Georgia (Transcaucasia). J Hum Evol 38:785–802CrossRefGoogle Scholar
  12. Gendron-Badou A, Coradin T, Maquet J, Frölich F, Livage J (2003) Spectroscopic characterization of biogenic silica. J Non-Cryst Solids 316:331–337CrossRefGoogle Scholar
  13. Green FJ (1979) Phosphatic mineralization of seeds from archaeological sites. J Archaeol Sci 6:279–284CrossRefGoogle Scholar
  14. Jahren AH, Gabel ML, Amundson R (1998) Biomineralization in seeds: developmental trends in isotopic signatures of hackberry. Palaeogeogr Palaeoclimatol Palaeoecol 138:259–269CrossRefGoogle Scholar
  15. Jahren AH, Amundson R, Kendall C, Wigand P (2001) Paleoclimatic reconstruction using the correlation in δ18O of hackberry carbonate and environmental water, North America. Quatern Res 56(2):252–263CrossRefGoogle Scholar
  16. Kunzler RH, Goodell HG (1970) The aragonite-calcite transformation: a problem in the kinetics of a solid-solid reaction. Am J Sci 269:360–391Google Scholar
  17. Lecomte J (1949) Le rayonnement infrarouge. Gauthier-Villard, ParisGoogle Scholar
  18. Lordkipanidze D, Jashashvili T, Vekua A, Ponce de León MS, Zollikofer CE, Rightmire GP, Pontzer H, Ferring R, Oms O, Tappen M, Bukhsianidze M, Agusti J, Kahlke R, Kiladze G, Martinez-Navarro B, Mouskhelishvili A, Nioradze M, Rook L (2007) Postcranial evidence from early Homo from Dmanisi, Georgia. Nature 449:305–310CrossRefGoogle Scholar
  19. Matterne V (2001) Agriculture et alimentation végétale durant l’âge du Fer et l’époque gallo-romaine en France septentrionale. M. Mergoil Edition, MontagnacGoogle Scholar
  20. McCobb LME, Briggs DEG, Evershed RP, Hall AR, Hall RA (2001) Preservation of fossil seeds from a 10th century AD cess pit at Coppergate, York. J Archaeol Sci 28:929–940CrossRefGoogle Scholar
  21. McCobb LME, Briggs DEG, Carruthers WJ, Evershed RP (2003) Phosphatisation of seeds and roots in a Late Bronze Age deposit at Potterne, Wiltshire, UK. J Archaeol Sci 30:1269–1281CrossRefGoogle Scholar
  22. Messager E, (2006) Apports des études paléobotaniques à la reconstitution paleoenvironnementale du site de Dmanissi et de sa région (Géorgie). Ph.D. Thesis, Museum National d’Histoire Naturelle, Paris.Google Scholar
  23. Messager E, Lordkipanidze D, Ferring CR, Deniaux B (2008) Fossil fruit identification by SEM investigations, a tool for palaeoenvironmental reconstruction of Dmanisi site, Georgia. J Archaeol Sci 35(10):2715–2725CrossRefGoogle Scholar
  24. Moenke HHW (1974) The infrared spectra of minerals. In: EVC Farmer (ed) Mineralogical Society Monograph, London, pp. 365Google Scholar
  25. Peric J, Vucak M, Krstulovic R, Brecevic LJ, Kralj D (1996) Phase transformation of calcium carbonate polymorphs. Thermochim acta 277:175–186CrossRefGoogle Scholar
  26. Pichard C, Fröhlich F (1986) Analyses infrarouges quantitatives des sédiments. Exemple du dosage du quartz et de la calcite. Revue de l'Institut Français du Pétrole 41(6):809–819Google Scholar
  27. Pustovoytov K, Riehl S (2006) Suitability of biogenic carbonate of Lithospermum fruits for 14C dating. Quatern Res 65(3):508–518CrossRefGoogle Scholar
  28. Pustovoytov K, Riehl S, Mittmann S (2004) Radiocarbon age of carbonate in fruits of Lithospermum from the early Bronze Age settlement of Hirbet ez-Zeraqon (Jordan). Veg Hist Archaeobot 13:207–212CrossRefGoogle Scholar
  29. Retallack G (1990) Soils of the past, an introduction to Paleopedology. Blackwell publishing, LondonGoogle Scholar
  30. Seibert J (1978) Fruchtanatomische Untersuchungen an Lithospermeae (Boraginaceae). Dissertationes Botanicae 44:1–207Google Scholar
  31. van Zeist W, Buitenhuis H (1983) Palaeobotanical studies of Neolithic Erbaba, Turkey. Anatolica 10:47–89Google Scholar
  32. van Zeist W, de Roller GJ (1995) Plant remains from Asikli Hoyuk, a pre-pottery Neolithic site in central Anatolia. Veg Hist Archaeobot 4:179–185CrossRefGoogle Scholar
  33. Vekua A, Lordkipanidze D, Rightmire GP, Agusti J, Ferring R, Maisuradze G, Zollikofer C (2002) A new skull of early Homo from Dmanisi, Georgia. Science 297:85–89CrossRefGoogle Scholar
  34. Wang Y, Jahren AH, Amundson RG (1997) Potential for 14C dating of biogenic carbonate in hackberry (Celtis) endocarps. Quatern Res 47:337–343CrossRefGoogle Scholar
  35. Wilby PR, Briggs DEG (1997) Taxonomic trends in the resolution of detail preserved in fossil phosphatized soft tissues. Geobios 20:493–502CrossRefGoogle Scholar
  36. Yanovsky E, Nelson EK, Kingsbury RM (1932) Berries rich in calcium. Science 75:565–566CrossRefGoogle Scholar
  37. Zhaodong N, Xiangna C, Qianqian Y, Xiuzhen W, Zuoyi S, Wanguo H (2008) Structure transition from aragonite to vaterite and calcite by the assistance of SDBS. J Colloid Interface Sci 325:331–336CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Erwan Messager
    • 1
    • 2
  • Aïcha Badou
    • 3
  • François Fröhlich
    • 3
  • Brigitte Deniaux
    • 2
  • David Lordkipanidze
    • 4
  • Pierre Voinchet
    • 2
  1. 1.Maison de l’Archéologie et de l’EthnologieNanterre cedexFrance
  2. 2.Département de PréhistoireMuséum national d’Histoire naturelleParisFrance
  3. 3.Département de PréhistoireMuséum national d’Histoire naturelleParis cedex 05France
  4. 4.Georgian National MuseumTbilisiGeorgia

Personalised recommendations