Advertisement

World Journal of Pediatrics

, Volume 15, Issue 4, pp 332–340 | Cite as

The role of gut micorbiome in obesity and diabetes

  • Katarzyna Górowska-KowolikEmail author
  • Agata Chobot
Review Article

Abstract

Background

Obesity and diabetes became a grooving problem in both adults and children. Many hypotheses concerned agents involved in the excessive weight gain process and it’s consequences. Not only genetic or environmental factors, but also intestinal microbiome seems to play a role in the pathophysiology of this phenomenon.

Data sources

A systematic review was conducted using Pubmed as the medical database source. Studies concerning connection between microbiome and metabolic disorders such as obesity and diabetes from last 10 years were analyzed.

Results

Intestinal bacteria may be involved both in the development of obesity, and its further complications. The pro-inflammatory and immunomodulating effect of dysbiosis are possible triggers of insulin resistance and diabetes. Early interventions aimed at the microbiome, as well as attempts to modify the microbiome at later stages may become new opportunities in the prevention and treatment of obesity and carbohydrate metabolism disorders.

Conclusions

The gut microbiome has been shown to be an important part of the metabolic processes. The use of probiotic, prebiotics and symbiotics is promising, but requires further investigations to determine the specific metabolic effects of each bacteria strain and substance.

Keywords

Diabetes Microbiome Obesity 

Notes

Author contributions

KGK—acquisition, analysis and interpretation of data, drafting the article, and final approval of the version to be published; AC—concept and design, revising the article critically for important intellectual content, and final approval of the version to be published.

Funding

None to disclose.

Compliance with ethical standards

Ethical approval

Not applicable.

Conflict of interest

No financial or nonfinancial benefits have been received or will be received from any party related directly or indirectly to the subject of this article.

References

  1. 1.
    Sidhu M, van der Poorten D. The gut microbiome. Aust Fam Phys. 2017;46:206–11.Google Scholar
  2. 2.
    Gadde KM, Martin CK, Berthoud HR, Heymsfield SB. Obesity: pathophysiology and management. J Am Coll Cardiol. 2018;71:69–84.CrossRefPubMedGoogle Scholar
  3. 3.
    Trandafir LM, Temneanu OR. Pre and post-natal risk and determination of factors for child obesity. J Med Life. 2016;9:386–91.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Mathur R, Barlow GM. Obesity and the microbiome. Expert Rev Gastroenterol Hepatol. 2015;9:1087–99.CrossRefPubMedGoogle Scholar
  5. 5.
    Gollwitzer ES, Marsland BJ. Impact of early-life exposures on immune maturation and susceptibility to disease. Trends Immunol. 2015;36:684–96.CrossRefPubMedGoogle Scholar
  6. 6.
    Walker RW, Clemente JC, Peter I, Loos RJ. The prenatal gut microbiome: are we colonized with bacteria in utero? Pediatr Obes. 2017;12:3–17.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Macpherson AJ, de Agüero MG, Ganal-Vonarburg SC. How nutrition and the maternal microbiota shape the neonatal immune system. Nat Rev Immunol. 2017;17:508.CrossRefPubMedGoogle Scholar
  8. 8.
    Astbury S, Song A, Zhou M, Nielsen B, Hoedl A, Willing BP et al. High fructose intake during pregnancy in rats influences the maternal microbiome and gut development in the offspring. Front Genet. 2018;9:203.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ma J, Prince AL, Bader D, Hu M, Ganu R, Baquero K, et al. High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model. Nat Commun. 2014;5:3889.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Mulligan CM, Friedman JE. Maternal modifiers of the infant gut microbiota: metabolic consequences. J Endocrinol. 2017;235:R1–12.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Barrett H, Gomez-Arango L, Wilkinson S, McIntyre H, Callaway L, Morrison M, et al. A vegetarian diet is a major determinant of gut microbiota composition in early pregnancy. Nutrients. 2018;10:890.CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Bridgman SL, Azad MB, Persaud RR, Chari RS, Becker AB, Sears MR, et al. Impact of maternal pre-pregnancy overweight on infant overweight at 1 year of age: associations and sex-specific differences. Pediatr Obes. 2018;13:579–89.CrossRefPubMedGoogle Scholar
  13. 13.
    Galley JD, Bailey M, Dush CK, Schoppe-Sullivan S, Christian LM. Maternal obesity is associated with alterations in the gut microbiome in toddlers. PLoS One. 2014;9:e113026.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Stanislawski MA, Dabelea D, Wagner BD, Sontag MK, Lozupone CA, Eggesbø M. Pre pregnancy weight, gestational weight gain, and the gut microbiota of mothers and their infants. Microbiome. 2017;5:113.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Collado MC, Isolauri E, Laitinen K, Salminen S. Effect of mother’s weight on infant’s microbiota acquisition, composition, and activity during early infancy: a prospective follow up study initiated in early pregnancy. Am J Clin Nutr. 2010;92:1023–30.CrossRefPubMedGoogle Scholar
  16. 16.
    Tun HM, Bridgman SL, Chari R, Field CJ, Guttman DS, Becker AB, et al. Roles of birth mode and infant gut microbiota in intergenerational transmission of overweight and obesity from mother to offspring. JAMA Pediatr. 2018;172:368–77.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Stokholm J, Thorsen J, Chawes BL, Schjørring S, Krogfelt KA, Bønnelykke K, Bisgaard H. Cesarean section changes neonatal gut colonization. J Allergy Clin Immunol. 2016;138:881–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Madan JC, Hoen AG, Lundgren SN, Farzan SF, Cottingham KL, Morrison HG, et al. Association of cesarean delivery and formula supplementation with the intestinal microbiome of 6-week-old infants. JAMA Pediatr. 2016;170:212–9.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Nagpal R, Tsuji H, Takahashi T, Nomoto K, Kawashima K, Nagata S, Yamashiro Y. Gut dysbiosis following C-section instigates higher colonisation of toxigenic Clostridium perfringens in infants. Benef Microbes. 2017;8:353–65.CrossRefPubMedGoogle Scholar
  20. 20.
    Mueller NT, Mao G, Bennet WL, Hourigan SK, Dominguez-Bello MG, Appel LJ, et al. Does vaginal delivery mitigate or strengthen the intergenerational association of overweight and obesity? Findings from the Boston Birth Cohort. Int J Obes. 2017;41:497.CrossRefGoogle Scholar
  21. 21.
    Chen J, He X, Huang J. Diet effects in gut microbiome and obesity. J Food Sci. 2014;79:R442–51.CrossRefPubMedGoogle Scholar
  22. 22.
    Ho NT, Li F, Lee-Sarwar KA, Tun HM, Brown BP, Pannaraj PS, et al. Meta-analysis of effects of exclusive breastfeeding on infant gut microbiota across populations. Nat Commun. 2018;9:4169.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ohlendorf JM, Robinson K, Garnier-Villarreal M. The impact of maternal BMI, gestational weight gain, and breastfeeding on early childhood weight: analysis of a statewide WIC dataset. Prev Med. 2019;118:210–5.CrossRefPubMedGoogle Scholar
  24. 24.
    Collado MC, Laitinen K, Salminen S, Isolauri E. Maternal weight and excessive weight gain during pregnancy modify the immunomodulatory potential of breast milk. Pediatr Res. 2012;72:77.CrossRefPubMedGoogle Scholar
  25. 25.
    Davis EC, Wang M, Donovan SM. The role of early life nutrition in the establishment of gastrointestinal microbial composition and function. Gut Microbes. 2017;8:143–71.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Liu JX, Xu X, Liu JH, Hardin JW, Li R. Association of maternal gestational weight gain with their offspring’s anthropometric outcomes at late infancy and 6 years old: mediating roles of birth weight and breastfeeding duration. Int J Obes. 2018;42:8.CrossRefGoogle Scholar
  27. 27.
    Andres A, Hull HR, Shankar K, Casey PH, Cleves MA, Badger TM. Longitudinal body composition of children born to mothers with normal weight, overweight, and obesity. Obesity. 2015;23:1252–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Stanislawski MA, Dabelea D, Wagner BD, Iszatt N, Dahl C, Sontag MK, et al. Gut microbiota in the first 2 years of life and the association with body mass index at age 12 in a norwegian birth cohort. mBio. 2018;9:e01751-18.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Blustein J, Attina T, Liu M, Ryan AM, Cox LM, Blaser MJ, Trasande L. Association of caesarean delivery with child adiposity from age 6 weeks to 15 years. Int J Obes. 2013;37:900.CrossRefGoogle Scholar
  30. 30.
    Yuan C, Gaskins AJ, Blaine AI, Zhang C, Gillman MW, Missmer SA, et al. Association between cesarean birth and risk of obesity in offspring in childhood, adolescence, and early adulthood. JAMA Pediatr. 2016;170:e162385.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bouhanick B, Ehlinger V, Delpierre C, Chamontin B, Lang T, Kelly-Irving M. Mode of delivery at birth and the metabolic syndrome in midlife: the role of the birth environment in a prospective birth cohort study. BMJ Open. 2014;4:e005031.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Darmasseelane K, Hyde MJ, Santhakumaran S, Gale C, Modi N. Mode of delivery and offspring body mass index, overweight and obesity in adult life: a systematic review and meta-analysis. PLoS One. 2014;9:e87896.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ortega-García JA, Kloosterman N, Alvarez L, Tobarra-Sánchez E, Cárceles-Álvarez A, et al. Full breastfeeding and obesity in children: a prospective study from birth to 6 years. Child Obes. 2018;14:327–37.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Morgen CS, Ängquist L, Baker JL, Andersen AMN, Sørensen TI, Michaelsen KF. Breastfeeding and complementary feeding in relation to body mass index and overweight at ages 7 and 11 y: a path analysis within the Danish National Birth Cohort. Am J Clin Nutr. 2018;107:313–22.CrossRefPubMedGoogle Scholar
  35. 35.
    Murphy EA, Velazquez KT, Herbert KM. Influence of high-fat-diet on gut microbiota: a driving force for chronic disease risk. Curr Opin Clin Nutr Metab Care. 2015;18:515–20.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Zhang M, Yang XJ. Effects of a high fat diet on intestinal microbiota and gastrointestinal diseases. World J Gastroenterol. 2016;22:8905–9.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Barlow GM, Yu A, Mathur R. Role of the gut microbiome in obesity and diabetes mellitus. Nutr Clin Pract. 2015;30:787–97.CrossRefPubMedGoogle Scholar
  38. 38.
    Saad MJA, Santos A, Prada PO. Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology. 2016;31:283–93.CrossRefPubMedGoogle Scholar
  39. 39.
    Bradlow HL. Obesity and the gut microbiome: pathophysiological aspects. Horm Mol Biol Clin Investig. 2014;17:53–61.PubMedGoogle Scholar
  40. 40.
    Singer K, Lumeng CN. The initiation of metabolic inflammation in childhood obesity. J Clin Investig. 2017;127:65–73.CrossRefPubMedGoogle Scholar
  41. 41.
    Rodrigues RR, Greer RL, Dong X, Dsouza KN, Gurung M, Wu JY, et al. Antibiotic induced alterations in gut microbiota are associated with changes in glucose metabolism in healthy mice. Front Microbiol. 2017;8:2306.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Hwang I, Park YJ, Kim YR, Kim YN, Ka S, Lee HY, et al. Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet induced obesity. FASEB J. 2015;29:2397–411.CrossRefPubMedGoogle Scholar
  43. 43.
    Vrieze A, Out C, Fuentes S, Jonker L, Reuling I, Kootte RS, et al. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J Hepatol. 2014;60:824–31.CrossRefPubMedGoogle Scholar
  44. 44.
    Reijnders D, Goossens GH, Hermes GD, Neis EP, van der Beek CM, Most J, et al. Effects of gut microbiota manipulation by antibiotics on host metabolism in obese humans: a randomized double-blind placebo-controlled trial. Cell Metab. 2016;24:63–74.CrossRefPubMedGoogle Scholar
  45. 45.
    Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 2016;65:426–36.CrossRefPubMedGoogle Scholar
  46. 46.
    Zhang Q, Wu Y, Fei X. Effect of probiotics on body weight and body-mass index: a systematic review and meta-analysis of randomized, controlled trials. Int J Food Sci Nutr. 2016;67:571–80.CrossRefGoogle Scholar
  47. 47.
    Zarrati M, Salehi E, Nourijelyani K, Mofid V, Zadeh MJH, Najafi F, et al. Effects of probiotic yogurt on fat distribution and gene expression of proinflammatory factors in peripheral blood mononuclear cells in overweight and obese people with or without weight loss diet. JACN. 2014;33:417–25.CrossRefGoogle Scholar
  48. 48.
    Nagata S, Chiba Y, Wang C, Yamashiro Y. The effects of the Lactobacillus casei strain on obesity in children: a pilot study. Benef Microbes. 2017;8:535–43.CrossRefPubMedGoogle Scholar
  49. 49.
    Nagata S, Chiba Y, Wang C, Yamashiro Y. The effects of the Lactobacillus casei strain on obesity in children: a pilot study. Benef Microbes. 2017;8:535–43.CrossRefPubMedGoogle Scholar
  50. 50.
    Ipar N, Aydogdu SD, Yildirim GK, Inal M, Gies I, Vandenplas Y, Dinleyici EC. Effects of synbiotic on anthropometry, lipid profile and oxidative stress in obese children. Benef Microbes. 2015;6:775–81.CrossRefPubMedGoogle Scholar
  51. 51.
    Kim J, Yun JM, Kim MK, Kwon O, Cho B. Lactobacillus gasseri BNR17 Supplementation Reduces the Visceral Fat Accumulation and Waist Circumference in Obese Adults: A Randomized, Double-Blind Placebo-Controlled Trial. J Med Food. 2018;21:454–61.CrossRefPubMedGoogle Scholar
  52. 52.
    Sanchez M, Darimont C, Panahi S, Drapeau V, Marette A, Taylor VH, et al. Effects of a diet-based weight-reducing program with probiotic supplementation on satiety efficiency, eating behaviour traits, and psychosocial behaviours in obese individuals. Nutrients. 2017;9:284.CrossRefPubMedCentralGoogle Scholar
  53. 53.
    Li C, Li X, Han H, Cui H, Peng M, Wang G, Wang Z. Effect of probiotics on metabolic profiles in type 2 diabetes mellitus: a meta-analysis of randomized, controlled trials. Medicine. 2016;95:e4088.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Kasińska MA, Drzewoski J. Effectiveness of probiotics in type 2 diabetes: a meta analysis. Pol Arch Med Wewn. 2015;125:803–13.PubMedGoogle Scholar
  55. 55.
    Sun J, Buys NJ. Glucose-and glycaemic factor-lowering effects of probiotics on diabetes: a meta-analysis of randomised placebo-controlled trials. Br J Nutr. 2016;115:1167–77.CrossRefPubMedGoogle Scholar
  56. 56.
    Akbari V, Hendijani F. Effects of probiotic supplementation in patients with type 2 diabetes: systematic review and meta-analysis. Nutr Rev. 2016;74:774–84.CrossRefPubMedGoogle Scholar
  57. 57.
    Samah S, Ramasamy K, Lim SM, Neoh CF. Probiotics for the management of type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes Res Clin Pract. 2016;118:172–82.CrossRefPubMedGoogle Scholar
  58. 58.
    Zhang Q, Wu Y, Fei X. Effect of probiotics on glucose metabolism in patients with type 2 diabetes mellitus: a meta-analysis of randomized controlled trials. Medicina. 2016;52:28–34.CrossRefPubMedGoogle Scholar
  59. 59.
    Mobini R, Tremaroli V, Ståhlman M, Karlsson F, Levin M, Ljungberg M, et al. Metabolic effects of Lactobacillus reuteri DSM 17938 in people with type 2 diabetes: a randomized controlled trial. Diabetes Obes Metab. 2017;19:579–89.CrossRefPubMedGoogle Scholar
  60. 60.
    Firouzi S, Majid HA, Ismail A, Kamaruddin NA, Barakatun-Nisak MY. Effect of multi strain probiotics (multi-strain microbial cell preparation) on glycemic control and other diabetes-related outcomes in people with type 2 diabetes: a randomized controlled trial. Eur J Nutr. 2017;56:1535–50.CrossRefPubMedGoogle Scholar
  61. 61.
    Chen M, Sun Q, Giovannucci E, Mozaffarian D, Manson JE, Willett WC, Hu FB. Dairy consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. BMC Med. 2014;12:215.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Pei R, Martin DA, DiMarco DM, Bolling BW. Evidence for the effects of yogurt on gut health and obesity. Crit Rev Food Sci Nutr. 2017;57:1569–83.CrossRefPubMedGoogle Scholar
  63. 63.
    Özdemir Ö. Any role for probiotics in the therapy or prevention of autoimmune diseases? Up-to-date review. J Complement Integr Med. 2013;10:229–50.CrossRefGoogle Scholar
  64. 64.
    Uusitalo U, Liu X, Yang J, Aronsson CA, Hummel S, Butterworth M, et al. Association of early exposure of probiotics and islet autoimmunity in the TEDDY study. JAMA Pediatr. 2016;170:20–8.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Savilahti E, Härkönen T, Savilahti EM, Kukkonen K, Kuitunen M, Knip M. Probiotic intervention in infancy is not associated with development of beta cell autoimmunity and type 1 diabetes. Diabetologia. 2018;61:2668–70.CrossRefPubMedGoogle Scholar
  66. 66.
    Wickens KL, Barthow CA, Murphy R, Abels PR, Maude RM, Stone PR, et al. Early pregnancy probiotic supplementation with Lactobacillus rhamnosus HN001 may reduce the prevalence of gestational diabetes mellitus: a randomised controlled trial. Br J Nutr. 2017;117:804–13.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Karamali M, Dadkhah F, Sadrkhanlou M, Jamilian M, Ahmadi S, Tajabadi- Ebrahimi M, et al. Effects of probiotic supplementation on glycaemic control and lipid profiles in gestational diabetes: a randomized, double-blind, placebo-controlled trial. Diabetes Metab. 2016;42:234–41.CrossRefPubMedGoogle Scholar
  68. 68.
    Million M, Angelakis E, Paul M, Armougom F, Leibovici L, Raoult D. Comparative meta-analysis of the effect of Lactobacillus species on weight gain in humans and animals. Microb Pathog. 2012;53:100–8.CrossRefPubMedGoogle Scholar

Copyright information

© Children's Hospital, Zhejiang University School of Medicine 2019

Authors and Affiliations

  1. 1.Department of Pediatric Gastroenterology and HepatologyClinical Hospital No 1ZabrzePoland
  2. 2.Department of Pediatrics, Institute of MedicineUniversity of OpoleOpolePoland

Personalised recommendations