World Journal of Pediatrics

, Volume 13, Issue 2, pp 173–182 | Cite as

Effect of prenatal antioxidant intake on infants’ respiratory infection is modified by a CD14 polymorphism

  • Seo Ah Hong
  • Eun Lee
  • Sung Ok Kwon
  • Kyung Won Kim
  • Youn Ho Shin
  • Kang Mo Ahn
  • Eun-Jin Kim
  • Jeom-Gyu Lee
  • Se-Young Oh
  • Soo-Jong HongEmail author
Original Article



Prenatal maternal diet may influence disease susceptibility in offspring with specific genetic backgrounds. We hypothesized that interactions between prenatal antioxidant intake and polymorphisms in immunity genes influence respiratory tract infection (RTI) susceptibility in infants at 12 months of age.


This study included 550 infants. In the Cohort for Childhood Origin of Asthma and Allergic Diseases (COCOA) birth cohort study, prenatal maternal diet was assessed by administering a food frequency questionnaire. Infants’ cord blood was genotyped for CD14 (rs2569190), TLR4 (rs1927911), and GSDMB (rs4794820) polymorphisms by the TaqMan method.


Higher prenatal intake of total fruit and vegetables (FV) was associated with the decreased risk of RTI in offspring (P-trend=0.0430). In children with TT genotype at rs2569190, a higher prenatal intake of vitamins A and C, fruits, and total FV decreased RTI risk (P-trend <0.05), while in infants with TC+CC genotype, a higher prenatal intake of fruit increased RTI risk (P-trend <0.05). When analyzing the 3 genotypes, children with TT genotype at rs2569190 were more protected against RTIs compared with those with CC genotype with respect to vitamin C and fruits [odds ratio (OR)=5.04 and OR=10.30, respectively]. In children with CC genotype at rs1927911, RTI risk showed a dose–response association with a higher prenatal intake of vitamin C (P for interaction<0.05). A higher prenatal intake of fruits and total FV reduced RTI risk in infants with GA+AA genotype of rs4794820 (P for interaction<0.05).


Prenatal antioxidant intake may reduce RTI risk in infants and this relationship may be modified by CD14, TLR4, and GSDMB polymorphisms.

Key words

antioxidants CD14 fruit polymorphism respiratory tract infection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We would like to gratefully and sincerely thank Dr. Ja-Young Kwon, Suk-Joo Choi, Kyung-Ju Lee, Hee Jin Park, Hye-Sung Won, Mi-Jin Kang, Ho-Sung Yu, Hyung Young Kim, Ju-Hee Seo, Byoung-Ju Kim, Hyo-Bin Kim, and So-Yeon Lee for their participation in this study.

Supplementary material

12519_2016_54_MOESM1_ESM.pdf (141 kb)
Supplementary material, approximately 141 KB.


  1. 1.
    Waterland RA, Michels KB. Epigenetic epidemiology of the developmental origins hypothesis. Annu Rev Nutr 2007;27:363–388.CrossRefPubMedGoogle Scholar
  2. 2.
    Martino D, Prescott S. Epigenetics and prenatal influences on asthma and allergic airways disease. Chest 2011;139:640–647.CrossRefPubMedGoogle Scholar
  3. 3.
    Leavy O. Asthma and allergy: Diet and airway inflammation. Nat Rev Immunol 2014;14:64–65.CrossRefPubMedGoogle Scholar
  4. 4.
    Scrimshaw NS, Taylor CE, Gordon JE. Interactions of nutrition and infection. Geneva: World Health Organization, 1968.Google Scholar
  5. 5.
    Scaife AR, McNeill G, Campbell DM, Martindale S, Devereux G, Seaton A. Maternal intake of antioxidant vitamins in pregnancy in relation to maternal and fetal plasma levels at delivery. Br J Nutr 2006;95:771–778.CrossRefPubMedGoogle Scholar
  6. 6.
    Prescott SL. Allergic disease: understanding how in utero events set the scene. Proc Nutr Soc 2010;69:366–372.CrossRefPubMedGoogle Scholar
  7. 7.
    West CE, Videky DJ, Prescott SL. Role of diet in the development of immune tolerance in the context of allergic disease. Curr Opin Pediatr 2010;22:635–641.PubMedGoogle Scholar
  8. 8.
    Webb AL, Villamor E. Update: effects of antioxidant and nonantioxidant vitamin supplementation on immune function. Nutr Rev 2007;65:181–217.CrossRefPubMedGoogle Scholar
  9. 9.
    Alberti-Fidanza A, Di Renzo GC, Burini G, Antonelli G, Perriello G. Diet during pregnancy and total antioxidant capacity in maternal and umbilical cord blood. J Matern Fetal Neonatal Med 2002;12:59–63.CrossRefPubMedGoogle Scholar
  10. 10.
    Wu G, Bazer FW, Cudd TA, Meininger CJ, Spencer TE. Maternal nutrition and fetal development. J Nutr 2004;134:2169–2172.CrossRefPubMedGoogle Scholar
  11. 11.
    Dominguez-Salas P, Cox SE, Prentice AM, Hennig BJ, Moore SE. Maternal nutritional status, C(1) metabolism and offspring DNA methylation: a review of current evidence in human subjects. Proc Nutr Soc 2012;71:154–165.CrossRefPubMedGoogle Scholar
  12. 12.
    Singh U, Devaraj S, Jialal I. Vitamin E, oxidative stress, and inflammation. Annu Rev Nutr 2005;25:151–174.CrossRefPubMedGoogle Scholar
  13. 13.
    Gore AB, Qureshi MA. Enhancement of humoral and cellular immunity by vitamin E after embryonic exposure. Poult Sci 1997;76:984–991.CrossRefPubMedGoogle Scholar
  14. 14.
    Mizgerd JP. Lung infection—a public health priority. PLoS Med 2006;3:e76.CrossRefGoogle Scholar
  15. 15.
    Tregoning JS, Schwarze J. Respiratory viral infections in infants: causes, clinical symptoms, virology, and immunology. Clin Microbiol Rev 2010;23:74–98.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Morcillo EJ, Estrela J, Cortijo J. Oxidative stress and pulmonary inflammation: pharmacological intervention with antioxidants. Pharmacol Res 1999;40:393–404.CrossRefPubMedGoogle Scholar
  17. 17.
    Brandsma E, Houben T, Fu J, Shiri-Sverdlov R, Hofker MH. The immunity-diet-microbiota axis in the development of metabolic syndrome. Curr Opin Lipidol 2015;26:73–81.CrossRefPubMedGoogle Scholar
  18. 18.
    Vial G, Dubouchaud H, Couturier K, Cottet-Rousselle C, Taleux N, Athias A, et al. Effects of a high-fat diet on energy metabolism and ROS production in rat liver. J Hepatol 2011;54:348–356.CrossRefPubMedGoogle Scholar
  19. 19.
    Lee IT, Yang CM. Role of NADPH oxidase/ROS in proinflammatory mediators-induced airway and pulmonary diseases. Biochem Pharmacol 2012;84:581–590.CrossRefPubMedGoogle Scholar
  20. 20.
    Surh YJ, Kundu JK, Na HK. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Med 2008;74:1526–1539.CrossRefPubMedGoogle Scholar
  21. 21.
    Parker D, Prince A. Innate immunity in the respiratory epithelium. Am J Respir Cell Mol Biol 2011;45:189–201.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kitchens RL, Munford RS. CD14-dependent internalization of bacterial lipopolysaccharide (LPS) is strongly influenced by LPS aggregation but not by cellular responses to LPS. J Immunol 1998;160:1920–1928.PubMedGoogle Scholar
  23. 23.
    Hailman E, Vasselon T, Kelley M, Busse LA, Hu MC, Lichenstein HS, et al. Stimulation of macrophages and neutrophils by complexes of lipopolysaccharide and soluble CD14. J Immunol 1996;156:4384–4390.PubMedGoogle Scholar
  24. 24.
    Wei J, Rahman S, Ayaub EA, Dickhout JG, Ask K. Protein misfolding and endoplasmic reticulum stress in chronic lung disease. Chest 2013;143:1098–1105.CrossRefPubMedGoogle Scholar
  25. 25.
    Kim HB, Ahn KM, Kim KW, Shin YH, Yu J, Seo JH, et al. Cord blood cellular proliferative response as a predictive factor for atopic dermatitis at 12 months. J Korean Med Sci 2012;27:1320–1326.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Oh SY, Kim EM, Shin MHL, Lee SH, Kim JE, Lee HS. Development and validation of food frequency questionnaire for adults. Seoul, Korea: The Korean Society of Health Promotion Annual Spring Conference, 2007:67–72.Google Scholar
  27. 27.
    Willers SM, Devereux G, Craig LC, McNeill G, Wijga AH, Abou El-Magd W, et al. Maternal food consumption during pregnancy and asthma, respiratory and atopic symptoms in 5-year-old children. Thorax 2007;62:773–779.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Dhur A, Galan P, Hercberg S. Folate status and the immune system. Prog Food Nutr Sci 1991;15:43–60.PubMedGoogle Scholar
  29. 29.
    West CE, Dunstan J, McCarthy S, Metcalfe J, D’Vaz N, Meldrum S, et al. Associations between maternal antioxidant intakes in pregnancy and infant allergic outcomes. Nutrients 2012;4:1747–1758.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Miyake Y, Sasaki S, Tanaka K, Hirota Y. Consumption of vegetables, fruit, and antioxidants during pregnancy and wheeze and eczema in infants. Allergy 2010;65:758–765.CrossRefPubMedGoogle Scholar
  31. 31.
    Litonjua AA, Rifas-Shiman SL, Ly NP, Tantisira KG, Rich-Edwards JW, Camargo CA Jr, et al. Maternal antioxidant intake in pregnancy and wheezing illnesses in children at 2 y of age. Am J Clin Nutr 2006;84:903–911.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bruckdorfer KR. Antioxidants and CVD. Proc Nutr Soc 2008;67:214–222.CrossRefPubMedGoogle Scholar
  33. 33.
    Marchese ME, Kumar R, Colangelo LA, Avila PC, Jacobs DR Jr, Gross M, et al. The vitamin E isoforms alpha-tocopherol and gamma-tocopherol have opposite associations with spirometric parameters: the CARDIA study. Respir Res 2014;15:31.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Patel A, Liebner F, Netscher T, Mereiter K, Rosenau T. Vitamin E chemistry. Nitration of non-alpha-tocopherols: products and mechanistic considerations. J Org Chem 2007;72:6504–6512.CrossRefPubMedGoogle Scholar
  35. 35.
    Cook-Mills JM, Abdala-Valencia H, Hartert T. Two faces of vitamin E in the lung. Am J Respir Crit Care Med 2013;188:279–284.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Cunningham-Rundles S, McNeeley DF, Moon A. Mechanisms of nutrient modulation of the immune response. J Allergy Clin Immunol 2005;115:1119–1128;quiz 1129.CrossRefPubMedGoogle Scholar
  37. 37.
    Serafini M. Dietary vitamin E and T cell-mediated function in the elderly: effectiveness and mechanism of action. Int J Dev Neurosci 2000;18:401–410.CrossRefPubMedGoogle Scholar
  38. 38.
    Yang Y, Bazhin AV, Werner J, Karakhanova S. Reactive oxygen species in the immune system. Int Rev Immunol 2013;32:249–270.CrossRefPubMedGoogle Scholar
  39. 39.
    Malireddy S, Kotha SR, Secor JD, Gurney TO, Abbott JL, Maulik G, et al. Phytochemical antioxidants modulate mammalian cellular epigenome: implications in health and disease. Antioxid Redox Signal 2012;17:327–339.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Mistry HD, Williams PJ. The importance of antioxidant micronutrients in pregnancy. Oxid Med Cell Longev 2011;2011:841749.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Willett WC. Nutritional epidemiology. New York: Oxford University Press, 1998.CrossRefGoogle Scholar
  42. 42.
    Sen CK, Packer L. Antioxidant and redox regulation of gene transcription. FASEB J 1996;10:709–720.CrossRefPubMedGoogle Scholar
  43. 43.
    Al-Alem U, Gann PH, Dahl J, van Breemen RB, Mistry V, Lam PM, et al. Associations between functional polymorphisms in antioxidant defense genes and urinary oxidative stress biomarkers in healthy, premenopausal women. Genes Nutr 2012;7:191–195.CrossRefPubMedGoogle Scholar
  44. 44.
    Hosakote YM, Jantzi PD, Esham DL, Spratt H, Kurosky A, Casola A, et al. Viral-mediated inhibition of antioxidant enzymes contributes to the pathogenesis of severe respiratory syncytial virus bronchiolitis. Am J Respir Crit Care Med 2011;183:1550–1560.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Caliskan M, Bochkov YA, Kreiner-Moller E, Bonnelykke K, Stein MM, Du G, et al. Rhinovirus wheezing illness and genetic risk of childhood-onset asthma. N Engl J Med 2013;368:1398–1407.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Scrimshaw NS, Taylor CE, Gordon JE. Interactions of nutrition and infection. Monogr Ser World Health Organ 1968;57:3–329.PubMedGoogle Scholar
  47. 47.
    Ngom PT, Collinson AC, Pido-Lopez J, Henson SM, Prentice AM, Aspinall R. Improved thymic function in exclusively breastfed infants is associated with higher interleukin 7 concentrations in their mothers’ breast milk. Am J Clin Nutr 2004;80:722–728.CrossRefPubMedGoogle Scholar
  48. 48.
    Collinson AC, Ngom PT, Moore SE, Morgan G, Prentice AM. Birth season and environmental influences on blood leucocyte and lymphocyte subpopulations in rural Gambian infants. BMC Immunol 2008;9:18.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Chandra RK. Antibody formation in first and second generation offspring of nutritionally deprived rats. Science 1975;190:289–290.CrossRefPubMedGoogle Scholar
  50. 50.
    Beach RS, Gershwin ME, Hurley LS. Gestational zinc deprivation in mice: persistence of immunodeficiency for three generations. Science 1982;218:469–471.CrossRefPubMedGoogle Scholar

Copyright information

© Children's Hospital, Zhejiang University School of Medicine and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Seo Ah Hong
    • 1
  • Eun Lee
    • 2
  • Sung Ok Kwon
    • 4
  • Kyung Won Kim
    • 5
  • Youn Ho Shin
    • 6
  • Kang Mo Ahn
    • 7
  • Eun-Jin Kim
    • 8
  • Jeom-Gyu Lee
    • 8
  • Se-Young Oh
    • 4
  • Soo-Jong Hong
    • 3
    Email author
  1. 1.ASEAN Institute for Health DevelopmentMahidol UniversitySalaya, Phutthamonthon, NakhonpathomThailand
  2. 2.Department of PediatricsInje University Haeundae Paik HospitalBusanKorea
  3. 3.Department of Pediatrics, Childhood Asthma Atopy Center, Environmental Health Center, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
  4. 4.Department of Food and Nutrition, Research Institute of Human EcologyKyung Hee UniversitySeoulKorea
  5. 5.Department of Pediatrics, Severance Children’s Hospital, College of MedicineYonsei UniversitySeoulKorea
  6. 6.Department of Pediatrics, CHA Medical CenterCHA University School of MedicineSeoulKorea
  7. 7.Department of Pediatrics, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulKorea
  8. 8.Division of Allergy and Respiratory DiseasesKorea National Institute of Health, Osong Health Technology Administration ComplexSeoulKorea

Personalised recommendations