Advertisement

World Journal of Pediatrics

, Volume 9, Issue 4, pp 356–360 | Cite as

Effect of thimerosal on the neurodevelopment of premature rats

  • Yan-Ni Chen
  • Jue Wang
  • Jie Zhang
  • Su-Jiao Li
  • Li He
  • Dong-Dong Shao
  • Hui-Ying Du
Brief report

Abstract

Background

This study was undertaken to determine the effect of thimerosal on the neurodevelopment of premature rats.

Methods

Thimerosal was injected into premature SD rats at a dose of 32.8, 65.6, 98.4 or 131.2 μg/kg on postnatal day 1. Expression of dopamine D4 receptor (DRD4) and serotonin 2A receptor (5-HT2AR), apoptosis in the prefrontal cortex on post-injection day 49, and learning and memory function were studied and compared with those in a control group injected with saline.

Results

Expression of DRD4 and 5-HT2AR and learning function decreased, and apoptosis increased significantly in the 131.2 μg/kg group (P<0.001). Memory function was significantly impaired by 65.6 (P<0.05), 98.4 and 131.2 μg/kg (P<0.001).

Conclusions

The negative adverse consequences on neurodevelopment observed in the present study are consistent with previous studies; this study raised serious concerns about adverse neurodevelopmental disorder such as autism in humans following the ongoing worldwide routine administration of thimerosalcontaining vaccines to infants.

Key words

dopamine D4 receptor neurodevelopment serotonin 2A receptor thimerosal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Young HA, Geier DA, Geier MR. Thimerosal exposure in infants and neurodevelopmental disorders: an assessment of computerized medical records in the Vaccine Safety Datalink. J Neurol Sci 2008;271:110–118.PubMedCrossRefGoogle Scholar
  2. 2.
    Ida-Eto M, Oyabu A, Ohkawara T, Tashiro Y, Narita N, Narita M. Embryonic exposure to Thimerosal, an organomercury compound, causes abnormal early development of serotonergic neurons. Neurosci Lett 2011;505:61–64.PubMedCrossRefGoogle Scholar
  3. 3.
    Olczak M, Duszczyk M, Mierzejewski P, Meyza K, Majewska MD. Persistent behavioral impairments and alterations of brain dopamine system after early postnatal administration of Thimerosal in rats. Behav Brain Res 2011;223:107–118.PubMedCrossRefGoogle Scholar
  4. 4.
    Sligte IG, Wokke ME, Tesselaar JP, Scholte HS, Lamme VA. Magnetic stimulation of the dorsolateral prefrontal cortex dissociates fragile visual short-term memory from visual working memory. Neuropsychologia 2011;49:1578–1588.PubMedCrossRefGoogle Scholar
  5. 5.
    Lauzon NM, Ahmad T, Laviolette SR. Dopamine D4 receptor transmission in the prefrontal cortex controls the salience of emotional memory via modulation of calcium calmodulin-dependent kinase II. Cereb Cortex 2011;22:2486–2494.PubMedCrossRefGoogle Scholar
  6. 6.
    Terry AV Jr, Callahan PM, Hall B, Webster SJ. Alzheimer’s disease and age-related memory decline (preclinical). Pharmacol Biochem Behav 2011;99:190–210.PubMedCrossRefGoogle Scholar
  7. 7.
    Humphrey ML, Cole MP, Pendergrass JC, Kiningham KK. Mitochondrial Mediated Thimerosal-Induced Apoptosis in a Human Neuroblastoma Cell Line (SK-N-SH). Neurotoxicology 2005;26:407–416.PubMedCrossRefGoogle Scholar
  8. 8.
    Paxinos G, Watson C. The rat brain in stereotaxic coordinates. Oxford: Academic Press, 2007.Google Scholar
  9. 9.
    Rodrigues JL, Serpeloni JM, Batista BL, Souza SS, Barbosa F Jr. Identification and distribution of mercury species in rat tissues following administration of Thimerosal or methylmercury. Arch Toxicol 2010;84:891–896.PubMedCrossRefGoogle Scholar
  10. 10.
    Aira Z, Buesa I, García del Caño G, Salgueiro M, Mendiable N, Mingo J, et al. Selective impairment of spinal mu-opioid receptor mechanism by plasticity of serotonergic facilitation mediated by 5-HT2A and 5-HT2B receptors. Pain 2012;153:1418–1425.PubMedCrossRefGoogle Scholar
  11. 11.
    Miranda MI, González-Cedillo FJ, Díaz-Muñoz M. Intracellular calcium chelation and pharmacological SERCA inhibition of Ca2+ pump in the insular cortex differentially affect taste aversive memory formation and retrieval. Neurobiol Learn Mem 2011;96:192–198.PubMedCrossRefGoogle Scholar
  12. 12.
    Hwang R, Tiwari AK, Zai CC, Felsky D, Remington E, Wallace T, et al. Dopamine D4 and D5 receptor gene variant effects on clozapine response in schizophrenia. Replication and exploration. Prog Neuropsychopharmacol Biol Psychiatry 2012;37:62–75.PubMedCrossRefGoogle Scholar
  13. 13.
    Humphrey ML, Cole MP, Pendergrass JC, Kiningham KK. Mitochondrial mediated Thimerosal-induced apoptosis in a human neuroblastoma cell line (SK-N-SH). Neurotoxicology 2005;26:407–416.PubMedCrossRefGoogle Scholar
  14. 14.
    Wyrembek P, Szczuraszek K, Majewska MD, Mozrzymas JW. Intermingled modulatory and neurotoxic effects of Thimerosal and mercuric ions on electrophysiological responses to GABA and NMDA in hippocampal neurons. J Physiol Pharmacol 2010;61:753–758.PubMedGoogle Scholar
  15. 15.
    Olczak M, Duszczyk M, Mierzejewski P, Wierzba-Bobrowicz T, Majewska MD. Lasting neuropathological changes in rat brain after intermittent neonatal administration of Thimerosal. Folia Neuropathol 2010;48:258–269.PubMedGoogle Scholar
  16. 16.
    Olczak M, Duszczyk M, Mierzejewski P, Bobrowicz T, Majewska MD. Neonatal administration of Thimerosal causes persistent changes in mu opioid receptors in the rat brain. Neurochem Res 2010;35:1840–1847.PubMedCrossRefGoogle Scholar
  17. 17.
    Hewitson L, Lopresti BJ, Stott C, Mason NS, Tomko J. Influence of pediatric vaccines on amygdala growth and opioid ligand binding in rhesus macaque infants: A pilot study. Acta Neurobiol Exp (Wars) 2010;70:147–164.Google Scholar
  18. 18.
    Abdel-Rahman M, Mohamed AF, Essam N, Moneiml AA. Studies on H1N1 vaccine-induced monoamines alternations and oxidative stress on brain of adult mice. J Appl Pharm Sci 2013;3:48–53.Google Scholar
  19. 19.
    Laurente J, Remuzgo F, Ávalos B, Chiquinta J, Ponce B, Avendaño R, et al. Neurotoxic effects of Thimerosal at vaccines doses on the encephalon and development in 7 days-old hamsters. An Fac Med Lima 2007;68:222–237.Google Scholar
  20. 20.
    Mrozek-Budzyn D, Majewska R, Kieltyka A, Augustyniak M. Neonatal exposure to Thimerosal from vaccines and child development in the first 3 years of life. Neurotoxicol Teratol 2012;34:592–597.PubMedCrossRefGoogle Scholar

Copyright information

© Children's Hospital, Zhejiang University School of Medicine and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yan-Ni Chen
    • 1
    • 2
  • Jue Wang
    • 1
    • 1
  • Jie Zhang
    • 2
  • Su-Jiao Li
    • 1
  • Li He
    • 2
  • Dong-Dong Shao
    • 2
  • Hui-Ying Du
    • 2
  1. 1.The Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Biomedical Engineering, School of Life Science and TechnologyXi’an Jiaotong UniversityXi’anChina
  2. 2.Affiliated Xi’an Children’s Hospital of Medical College of Xi’an Jiaotong UniversityXi’anChina

Personalised recommendations