Advertisement

A geospatial analysis of land use dynamics and its impact on land surface temperature in Siliguri Jalpaiguri development region, West Bengal

  • Ivana HoqueEmail author
  • Smt. Kabita Lepcha
Original Paper
  • 19 Downloads

Abstract

Urbanization associates physical expansion of built up land which influences rapid change of land use/landcover (LULC) pattern of an area. LULC is one of the most visible results of modification of the natural features by human interventions which leads to encroachment of natural land and related degradation. The present paper relates to the exploration of remote sensing and geographic data to study the land use patterns, land cover classification, relationship between different LULC parameters and their impacts. GIS and remote sensing have been integrated as vital tool for the analysis and investigation of spatio temporal data. Siliguri Jalpaiguri planning region has been growing very rapidly over the last decades that brings great changes in the nature of land use pattern and related transformation. The result indicates 0.34 °C increase of land surface temperature per year and its association with spatial indices such as Normalized Difference Vegetation Index, Normalized Difference Water Index, and Normalized Difference Built Up Index.

Keywords

Land use landcover pattern Land transition Land surface temperature Spatial indices Urban temperature 

References

  1. Afzan Buyadi SN, Naim WM, Misn A (2013) Green spaces growth impact on the urban microclimate. Procedia Soc Behav Sci 105:547–557.  https://doi.org/10.1016/j.sbspro.2013.11.058 CrossRefGoogle Scholar
  2. Artis DA, Carnahan WH (1982) Survey of emissivity variability in thermography of urban areas. Remote Sens Environ 12(4):313–329.  https://doi.org/10.1016/0034-4257(82)90043-8 CrossRefGoogle Scholar
  3. Ayanlade A, Howard MT (2019) Land surface temperature and heat fluxes over three cities in Niger Delta. J Afr Earth Sci 151:54–66.  https://doi.org/10.1016/j.jafrearsci.2018.11.027 CrossRefGoogle Scholar
  4. Bowler DE, Buyung-Ali L, Knight TM, Pullin AS (2010) Urban greening to cool towns and cities: a systematic review of the empirical evidence. Landsc Urban Plan 97:147–155.  https://doi.org/10.1016/j.landurbplan.2010.05.006 CrossRefGoogle Scholar
  5. Briassoulis H (2000) Land use change: theoretical and modeling approaches In S Loveridge (Ed), Web book of regional science. Regional Research Institute, West Virginia UniversityGoogle Scholar
  6. Carlson TN, Ripley DN (1997) On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens Environ 62(3):241–252.  https://doi.org/10.1016/S0034-4257(97)00104-1 CrossRefGoogle Scholar
  7. Foody GM (1992) On the compensation for chance agreement in image classification accuracy assessment. Photogramm Eng Remote Sens 58:1459–1460Google Scholar
  8. Gu Y, Hunt E, Wardlow B, Basara JB, Brown JF, Verdin JP (2008) Evaluation of NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data. Geophys Res Lett 35:1–5CrossRefGoogle Scholar
  9. Landsat Project Science Office (2002) Landsat 7 Science Data User’s Handbook. URL: http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_toc.html, Goddard Space Flight Center, NASA, Washington, DC (last date accessed: 10 September 2003)
  10. Liu H, Weng Q (2008) Seasonal variations in the relationship between landscape pattern and land surface temperature in Indianapolis, USA. Environ Monit Assess 144(1–3):199–219.  https://doi.org/10.1007/s10661-007-9979-5 CrossRefGoogle Scholar
  11. Ma Z, Redmond RL (1995) Tau coefficients for accuracy assessment of classification of remote sensing data. Photogramm Eng Remote Sens 61(4):435–439Google Scholar
  12. Mallick J, Rahman A (2012) Impact of population density on the surface temperature and micro-climate of Delhi. Curr Sci 102(12):1708–1713Google Scholar
  13. Mohan M, Pathan SK, Narendrareddy K, Kandya A, Pandey S (2011) Dynamics of urbanization and its impact on land use/land cover: a case study of megacity Delhi. J Environ Prot 2:1274–1283CrossRefGoogle Scholar
  14. Mubea K, Menz G (2012) Monitoring land-use change in Nakuru (Kenya) using multi-sensor satellite data. Adv Remote Sens 1:74–84.  https://doi.org/10.4236/ars.2012.13008 CrossRefGoogle Scholar
  15. Nkeki FN (2016) Spatio-temporal analysis of land use transition and urban growth characterization in Benin metropolitan region, Nigeria. Remote Sens Appl Soc Environ 4:119–137.  https://doi.org/10.1016/j.rsase.2016.08.002 CrossRefGoogle Scholar
  16. Purevdorj TS, Tateishi R, Ishiyama T, Honda Y (1998) Relationships between percent vegetation cover and vegetation indices. Int J Remote Sens 19(18):3519–3535.  https://doi.org/10.1080/014311698213795 CrossRefGoogle Scholar
  17. Ramachandra TV, Aithal BH, Durgappa SD (2012) Land surface temperature analysis in an urbanizing landscape through multi-resolution data. J Space Sci Technol 1(1):1–10Google Scholar
  18. Snyder WC, Wan Z, Zhang Y, Feng YZ (1998) Classification-based emissivity for land surface temperature measurement from space. Int J Remote Sens 19(14):2753–2774CrossRefGoogle Scholar
  19. Sobrino JA, Jiménez-Muñoz JC, Paolini L, Jime JC (2004) Land surface temperature retrieval from LANDSAT TM 5. Remote Sens Environ 90(4):434–440.  https://doi.org/10.1016/j.rse.2004.02.003 CrossRefGoogle Scholar
  20. Townshend JR, Justice CO (1986) Analysis of the dynamics of African vegetation using the normalized difference vegetation index. Int J Remote Sens 7(11):1435–1445.  https://doi.org/10.1080/01431168608948946 CrossRefGoogle Scholar
  21. Turner BL, Meyer WB, Skole DL (1994) Global land-use/land-cover change: towards an integrated study. Ambio 23(1):91–95 http://www.jstor.org/stable/4314168 Google Scholar
  22. Weng Q (2001) A remote sensing–GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China. Int J Remote Sens 22(10):1999–2014.  https://doi.org/10.1080/713860788 CrossRefGoogle Scholar
  23. Weng Q (2002) Land use change analysis in the Zhujiang delta of China using satellite remote sensing, GIS and stochastic modelling. J Environ Manag 64(3):273–284.  https://doi.org/10.1006/jema.2001.0509 CrossRefGoogle Scholar
  24. Xiao R, Ouyang Z, Wang X, Li W (2002) Detecting and analyzing urban heat island and patterns in Beijing, China. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, ChinaGoogle Scholar
  25. Xu H (2006) Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int J Remote Sens 27(14):3025–3033.  https://doi.org/10.1080/01431160600589179 CrossRefGoogle Scholar
  26. Zha Y, Gao J, Ni A (2003) Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int J Remote Sens 24(3):583–594.  https://doi.org/10.1080/01431160304987 CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fotogrammetria e Topografia (SIFET) 2019

Authors and Affiliations

  1. 1.Research ScholarUniversity of Gour BangaMaldaIndia
  2. 2.Department of geographyUniversity of Gour BangaMaldaIndia

Personalised recommendations