Advertisement

Image treatment method and spatial analysis of Anna magmatic ring complex (Eglab massif, the Reguibat Rise, South-West Algeria)

  • Ibrahim Zeroual
  • Mohammed Tabeliouna
  • Abdelmadjid SeddikiEmail author
  • Fatima Zohra Allami
Original Paper
  • 13 Downloads

Abstract

This study proposes an image treatment process of Anna magmatic ring complex (Eglab, Dorsale Reguibat, South-West Algeria). Quantification and the related problem of classification by the mobile centers method lead us to search for methods as tools for the generalization of these treatments. Unlike the supervised classification, there are no predetermined classes or labels. The various processes to achieve the expected results are discussed in this work, and an automatically system of semantic analysis and interpretation of remote sensing images is presented. Considering that the k-means method corresponds to the probabilistic formulation of the classification problem, the aim is to characterize the geological facies of Anna ring complex (ARC). The result of this approach allowed us to recognize five magmatic facies that stack forming a ring magmatic complex. This confirms the interest of the k-means method in the desert areas.

Keywords

Anna ring complex Eglab Dorsale Reguibat k-means 

References

  1. Anderberg MR (1973) Cluster analysis for applications. N.Y. AcademicGoogle Scholar
  2. Askari G, Pour BA, Pradhan B, Sarfi M, Nazemnejad F (2018) Band ratios matrix transformation (BRMT): a sedimentary lithology mapping approach using ASTER satellite sensor,18(10): 3213Google Scholar
  3. Aubakar AJ, Hasim M, Pour BA (2018) Identification of hydrothermal alteration minerals associated with geothermal system using ASTER and Hyperion satellite data: a case study from Yankari Park, NE Nigeria. Geocarto Int.  https://doi.org/10.1080/10106049.2017.1421716
  4. Azzouni-Sekkal A (1976) Les stocks plutoniques basiques de la jointure “Yetti-Eglab” Thèse Doct. 3 éme cycle Univ. Alger, PP.99Google Scholar
  5. Bersi M, Saibi H, Chabou MC (2016) Aerogravity and remote sensing observations of an iron deposit in Gara Djebilet, southwestern Algeria. J Afr Earth Sci 116:134–150CrossRefGoogle Scholar
  6. Bessoles B (1977) Géologie de l’Afrique : le craton ouest africain .B.R.G.M, n°88 ,402Google Scholar
  7. Buffière JM, Fathy JC, Petey J (1965) Carte géologique au 1/500000e de la région des Eglab et du bordeur nord de Yetti. Organisme technique mise en valeur des richesses du sous-sol saharien, ParisGoogle Scholar
  8. Byrne GR, Crapper PF, Mayo KK (1980) Monitoring land cover changes by principal components analysis of multitemporal landsat data. Remote Sens Environ 10:175–184CrossRefGoogle Scholar
  9. Coleman GR, Andrews HC (1979) Image segmentation by clustering. Proc IEEE 67:773–785CrossRefGoogle Scholar
  10. Djemai S, Bendaoud A, Deroin J-P, Berraki F, Brahmi B, Ouzegane K, Kienast J-R (2012) Apport des images Landsat 7 ETM+ pour la cartographie géologique des terrains précambiens en zone aride: exemple de la région d’Amesmessa (sud in ouzzal, Hoggar, Algérie). Photo Interprétation European Journal of Applied Remote Sensing n2012:1–2Google Scholar
  11. Duda RD, Hart PE, Stork DG (2001) Pattern classification, 2e. N.Y.,WileyGoogle Scholar
  12. Gevin P (1958) Cartes au 1/500 000 Eglab et Tindouf. Serv. Carte Géol. AlgérieGoogle Scholar
  13. Girard MC, Girard CM (1999) “Traitement des données de télédétection” Editions de la Boyère, Valbonne Dunod, ParisGoogle Scholar
  14. Hartigan JA (1975) Clustering algorithms. N.Y.,WileyGoogle Scholar
  15. Kelly DJ (1983) The concept of a spectral class –a comparison of clustering algorithmsGoogle Scholar
  16. Landgrebe DA (2003) Signal theory methods in multispectral remote sensing, N.Y.,WileyGoogle Scholar
  17. Lassere M, Lameyer J, Buffière JM (1970) Données géochronologique sur l’axe précambrien Yetti-Eglab en Algérie et en Mauritanie du Nord. Bull. BRGM, 2éme série, IV 2, pp.5–13Google Scholar
  18. Letts PA (1978) Unsupervised classification in the aries image analysis system. Proc 5th Canadian Symp on Remote Sensing, 61–71Google Scholar
  19. Levine E, Domany E (2002) Resampling method for unsupervised estimation of cluster validity. Neural Comput 13:2573–2593Google Scholar
  20. Levrard C (2013) Fast rates for empirical vector quantization. Electron J Stat 7:1716–1746Google Scholar
  21. Linde Y, Buzo A, Gray RM (1980) An algorithm for vector quantizer design. IEEE Trans Commun 28:801–804CrossRefGoogle Scholar
  22. Linder T (2002) Learning-theoretic methods in vector quantization. In Györfi, L., editor, Principles of nonparametric learning. Springer-Verlag, WienGoogle Scholar
  23. Peucat JJ, Capdevila R, Drareni A, Mahdjoub Y, Kahoui M (2005) The Eglab massif in the West African Craton (Algeria), and original segment of the Ebernean orogenic belt: petrology, geochemistry and geochronology. Precambrian Res 136:309–352CrossRefGoogle Scholar
  24. Pour BA, Hashim M (2012) The application of ASTER remote sensing data to porphyr copper and epithermal gold deposits. Ore Geol Rev 44:1–9.  https://doi.org/10.1016/j.oregeorev.2011.09.009 CrossRefGoogle Scholar
  25. Pour BA, Hashim M, Hong JK, Park Y (2017) Lithological and alteration mineral mapping in poorly exposed lithologies using Landsat-8 and ASTER satellite data: northeastern Graham Land, Antarctic Peninsula. Ore Geol Rev.  https://doi.org/10.1016/j.oregeorev.2017.07.018
  26. Pour BA, Hashim M, Park Y, Hong JK (2018a) Mapping alteration mineral zones and lithological units in Antarctic regions using spectral bands of ASTER remote sensing data. Geocarto Int.  https://doi.org/10.1080/10106049.2017b.1347207
  27. Pour BA, Park TS, Park Y, Hong JK, Zoheir B, Pradhan B, Ayoobi I, Hashim M (2018b) Application of multi-sensor satellite data for exploration of Zn-Pb sulfide mineralization in the Franklinian Basin, North Greenland. Remote Sens 10:1186.  https://doi.org/10.3390/rs10081186 CrossRefGoogle Scholar
  28. Richards JA (1996) Classifier performance and map accuracy. Remote Sens Environ 57:161–166CrossRefGoogle Scholar
  29. Richards JA, Jia X (1999) Remote sensing digital image analysis: an introduction, 3rd edn. Springer Verlag, BerlinCrossRefGoogle Scholar
  30. Sabaté P (1973) La jointure Yetti-Eglab dans la dorsale précambrienne de pays Reguibat (Sahara occidental algérien).C.R. Acad. SCI, Paris (D), 276:2237–2240Google Scholar
  31. Sabaté P (1978) Données géochimiques et radiométriques sur les volcanites calco-alcalines précambriennes de l’Eglab (Sahara occidentale algérienne). Esquisse de leur évolution géotectonique. Bull Soc Géol Fr 1:81–90CrossRefGoogle Scholar
  32. Sabaté P (1979) Les volcanites Eglab : données radiométriques de la dernière expression magmatique calco-alcaline du cycle orogénique Eglab (Sahara occidentale), revue de géologie dynamique et géographie physique, 21(5):326–329, ParisGoogle Scholar
  33. Sabaté P, Lomax K (1975) Données stratigraphiques et paléomagnétiques de la région Yetti-Eglab (Sahara occidental algérien). Bull Bur Rech Géol Min 4:293–311Google Scholar
  34. Swain PH, Hauska H (1977) The decision tree classifier: design and potential. IEEE Trans Geosci Electron 15:142–147CrossRefGoogle Scholar
  35. Tabeliouna M. (2009) Pétrologie et géochimie des roches magmatiques de la structure annulaire de Bled M’Dena (Eglab occidental, Dorsale Reguibat SW algérien), thèse de Doctorat, Université d’Oran, pp 203Google Scholar
  36. Tabeliouna M, Cottin J-Y, Kolli O, Zerka M (2008) les clinopyroxenites et les gabbros associés d’un complexe magmatique annulaire (Sud de Gara Djebilet, Eglab, dorsal Réguibat, SW algérien). Bull Serv Geol Nat 19(3):1–21Google Scholar
  37. Tabeliouna M, Cottin JY, Bowden P, Renac C (2015) Petrogenesis of the post-collisional Bled M’Dena volcanic ring complex in Reguibat Rise (western Eglab shield, Algeria). J Afr Earth Sci.  https://doi.org/10.1016/j.jafrearsci.2015.04.003

Copyright information

© Società Italiana di Fotogrammetria e Topografia (SIFET) 2019

Authors and Affiliations

  1. 1.Laboratoire Géoressources et Risques Naturels (GEOREN)Université d’Oran2OranAlgeria
  2. 2.Département des Sciences de la TerreCentre Universitaire de TindoufTindoufAlgeria

Personalised recommendations