Applied Geomatics

, Volume 11, Issue 1, pp 39–52 | Cite as

Integrating dendrochronology and geomatics to monitor natural hazards and landscape changes

  • Marco CiolliEmail author
  • Marco Bezzi
  • Giovanni Comunello
  • Giovanni Laitempergher
  • Stefano Gobbi
  • Clara Tattoni
  • Maria Giulia Cantiani
Original Paper


The monitoring of natural hazards is of extreme importance in the areas of Italy where there are high hydrogeological and avalanche risks. Despite the fact that records of past events are sometimes available, some of their data are often incomplete and show that the monitoring and mapping of these phenomena are never enough to avoid damage. We present the results of different studies where an integrated approach has been used by combining geomatics and dendrochronology techniques. In particular, we refer to case studies concerning avalanches, debris flows, natural reforestation in Italy and riverbed path changes in Albania. The position of all the plants sampled for dendrochronology was taken by GPS (Global Positioning System). The cartographic information used in these studies was provided by official sources from public organisations or processed by extracting them from aerial photographs or satellite imagery. With the Geographic Information System, it was possible to spatialise and analyse the information from dendrochronological sampling through the creation of multi-temporal morphological and potential risk maps showing the effects of the phenomena on forest cover. The GIS software used in these studies are GRASS, QGIS and IDRISI. The results showed that avalanches, debris flow, riverbed and landscape change can be studied effectively by integrating geomatics and dendrochronological techniques. This integration enabled spatial and temporal modelling, including the reconstruction of paths and volumes of past phenomena. The analysis of growth disturbances over time also enabled the reconstruction of the frequency of avalanches and debris flow activity over the last 50 years and, in some areas, over the last century. A detailed analysis of one of the avalanche tracks provided interesting results regarding the reconstruction of avalanche dynamics. Analysis of scars on buried stems of Pinus sylvestris also provided interesting results in terms of debris volume estimation. The dendrochronological reconstruction of the patterns of natural reforestation led to the determination of forest expansion rates that were used for modelling future scenarios and refining the changes of river morphology. Dendrochronology strongly improved the results of GIS satellite imagery analysis. These reconstructions are particularly important for the areas that are more exposed to the direct risk of avalanches, debris flows and floods in order to prevent the consequences of such phenomena in a changing climate.


GIS Dendrochronology Avalanche Debris flow Riverbed change Forests 



We would like to thank the anonymous reviewers who helped us to improve the manuscript, Nickolas Vilday, who proofread the first version of the document and Margaret Smith, who proofread the last version.


  1. Amos J (2017) Italy avalanche: a cruel coincidence. Science correspondent 19 January 2017 BBC News -Science & Environment. Available at: Accessed 30 May 2017
  2. Astrade L, Stoffel M, Corona C, Lopez-Saez J (2012) Using tree rings to study events and morphological changes: relevance, methods, and contribution of Alpine research to dendrogeomorphology. Géomorphologie 3:30–60Google Scholar
  3. Berger F (1995) Appréciation des potentialités d’avalanche sous couvert forestier. CEMAGREF, GrenobleGoogle Scholar
  4. Berger F, Chauvin C (1996) Cartographie des fonctions de protection de la forêt de montagne: appréciation des potentialités d’avalanches sous couvert forestier. Rev Géogr Lyon 71(2):137–145CrossRefGoogle Scholar
  5. Bezzi M (2006) Integrated analysis of natural hazards in mountain areas, PhD thesis, Università degli Studi di Trento, Dipartimento di Ingegneria Civile e Ambientale. 142 ppGoogle Scholar
  6. Bezzi M, Cantiani MG, Ciolli M, Comunello G, Cherubini P (2003) Leggere gli anelli degli alberi per ricostruire la frequenza e l'estensione delle valanghe nel passato. De Angelis P, Macuz A, Bucci G, Scarascia Mugnozza G, eds. Viterbo:Società Italiana di Selvicoltura ed Ecologia Forestale, 2003. Vol. 3, p. 147–152. Atti del convegno: Alberi e foreste per il nuovo millennio, Viterbo, 15–18 Ottobre 2001Google Scholar
  7. Bezzi M, Ciolli M, Comunello G, Cherubini P, Cantiani MG (2004) Integration of dendrochronology and GIS techniques to study avalanche phenomena. Geomatics workbooks, v. 3, oli/mcmbmgcpcgc.pdf
  8. Bonomi A. (2004) GRASS module for the analysis of the avalanche dynamic. Presented at the 10th congress INTERPRAEVENT, Riva del Garda, Italy, 25-27 May 2004Google Scholar
  9. Buffoni D, Leoni D, Bortolamedi R (2003) L’eredità cartografica catastale degli Asburgo in forma digitale. Atti della 6a Conferenza Nazionale ASITA. Geomatica per l’Ambiente, il Territorio e il Patrimonio Culturale, Perugia, 5–8 November 2002 1:559–564Google Scholar
  10. Butler DR, Malanson GP (1985) A reconstruction of snow-avalanche characteristics in Montana, U.S.A., using vegetative indicators. J Glaciol 31:185–187CrossRefGoogle Scholar
  11. Cherubini P, Piussi P, Schweingruber FH (1996) Spatiotemporal growth dynamics and disturbances in a subalpine spruce forest in the Alps: a dendroecological reconstruction. Can J For Res 26:991–1001CrossRefGoogle Scholar
  12. Christen M, Kowalski J, Bartelt P (2010) RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg Sci Technol 63:1–14CrossRefGoogle Scholar
  13. Ciolli M, Tabarelli S, Zatelli P (1998) 3D spatial data integration for avalanche risk management., international symposium on GIS - between visions and applications September 7-10 Stuttgart, Germany, 1998 international archives of photogrammetry and remote sensing vol. XXXI, part 4:121–127Google Scholar
  14. Ciolli M, Tattoni C, Ferretti F (2012) Understanding forest changes to support planning: a fine-scale Markov chain approach. In: Jordán F, Jørgensen S (eds) Models of the ecological hierarchy from molecules to the ecosphere. Elsevier, Great Britain, pp 341–359. Developments in Environmental Modelling; 25. Google Scholar
  15. Comunello G, Bezzi M, Cherubini P, Ciolli M, Cantiani MG (2001) Conoscere il passato per interpretare il presente. Tecniche GIS e di dendrocronologia applicata per lo studio di aree potenzialmente soggette al rischio di valanghe. EM Linea Ecologica 4:58–62Google Scholar
  16. Congedo L (2017) SCP Semi-Automatic Classification Plugin (SCP) Available at: Accessed 31 May 2017
  17. Corona C, Lopez Saez J, Stoffel M, Bonnefoy M, Richard D, Astrade L, Berger F (2012) How much of the real avalanche activity can be captured with tree rings? An evaluation of classic dendrogeomorphic approaches and comparison with historical archives. Cold Reg Sci Technol 74-75:31–42. CrossRefGoogle Scholar
  18. Cukalla M (2009) Study on small scale mining in Albania: improving transparency, economics and financial issues, and health and safety impacts for Erzen river, Technical report, World BankGoogle Scholar
  19. Decaulme A, Eggertsson O, Saemundsson B (2012) A first dendrogeomorphologic approach of snow avalanche magnitude-frequency in Northern Iceland. Geomorphology 167-168:35–44. CrossRefGoogle Scholar
  20. Díez-Herrero A, Ballesteros JA, Ruiz-Villanueva V, Bodoque JM (2013) A review of dendrogeomorphological research applied to flood risk analysis in Spain. Geomorphology 196:211–220. CrossRefGoogle Scholar
  21. Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risksGoogle Scholar
  22. Dorren LKA, Seijmonsbergen AC (2003) Comparison of three GIS-based models for predicting rockfall runout zones at a regional scale. Geomorphology 56:49–64CrossRefGoogle Scholar
  23. Dorren LKA, Berger F, Putters US (2006) Real size experiments and 3D simulation of rockfall on forested and non-forested slopes. Nat Hazards Earth Syst Sci 6:145–153CrossRefGoogle Scholar
  24. Dorren LKA, Berger F, Jonsson M, Krautblatter M, Mölk M, Stoffel M, Wehrli A (2007) State of the art in rockfall – forest interactions. Schweiz Z Forstwes 158(6):128–141CrossRefGoogle Scholar
  25. Eastman JR (2006) Idrisi Andes. Clark University, WorcesterGoogle Scholar
  26. Ferretti F, Sboarina C, Tattoni C, Vitti A, Zatelli P, Geri F, Pompei E, Ciolli M (2018) The 1936 Italian Kingdom Forest Map reviewed: a dataset for landscape and ecological research. Ann Silv Res 42(1):3–19. Google Scholar
  27. Gallerani G, Pradella C (2016) Indagine dendrocronologica sui boschi in neo-formazione. Report for Applied Ecology course, University of Trento 15 pp.Google Scholar
  28. Horton P, Jaboyedoff M, Rudaz B, Zimmermann M (2013) Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale. Nat Hazards Earth Syst Sci 13:869–885. CrossRefGoogle Scholar
  29. Jakob M, Holm K, Weatherly H, Liu S, Ripley N (2013) Debris flood risk assessment for Mosquito Creek, British Columbia, Canada. Nat Hazards 65(3):1653–1681. CrossRefGoogle Scholar
  30. Johnson B (2014) Effects of pansharpening on vegetation indices. ISPRS Int J Geo-Inf 3(2):507–522CrossRefGoogle Scholar
  31. Laitempergher G, Cantiani MG, Ciolli M, Bezzi M, Canals J (2004) Tree rings as tools to reconstruct past debris flow. Presented at the 10th congress INTERPRAEVENT, Riva del Garda, Italy, 25-27 May 2004Google Scholar
  32. Moos C, Dorren LKA, Stoffel M (2017) Quantifying the effect of forests on frequency and intensity of rockfalls (2017). Nat Hazards Earth Syst Sci 17(2):291–304. CrossRefGoogle Scholar
  33. Neteler M, Bowman H, Landa M, Metz M (2012) GRASS GIS: a multi-purpose open source GIS. Environ Model Softw 31:124–130CrossRefGoogle Scholar
  34. Piussi P. (1992). Carta del limite potenziale del bosco in Trentino. Servizio Foreste Caccia e Pesca della Provincia Autonoma di Trento, Trento, ItalyGoogle Scholar
  35. Pop OT, Gavrilă I-G, Roşian G, Meseşan F, Decaulne A, Holobâcă IH, Anghel T (2016) A century-long snow avalanche chronology reconstructed from tree-rings in Parâng Mountains (Southern Carpathians, Romania) Quatern Int 415:230-240.
  36. Procter E, Bollschweiler M, Stoffel M, Neumann M (2011) A regional reconstruction of debris-flow activity in the Northern Calcareous Alps, Austria. Geomorphology 132(1–2):41–50. CrossRefGoogle Scholar
  37. Quantum GIS Development Team (2017). Quantum GIS Geographic Information System. Available at: Accessed 31 May 2017
  38. Rammer W, Brauner M, Dorren LKA, Berger F, Lexer MJ (2010) Evaluation of a 3-D rockfall module within a forest patch model. Nat Hazards Earth Syst Sci 10:699–711CrossRefGoogle Scholar
  39. Rayback SA (1998) A dendrogeomorophological analysis of snow avalanches in the Colorado Front Range, USA. Phys Geogr 6:502–515CrossRefGoogle Scholar
  40. Salm B (1966) Contribution to avalanche dynamics. International Association of Scientific Hydrology Publication 69 (Symposium at Davos 1965 - Scientific Aspects of Snow and Ice Avalanches), pp 199-214Google Scholar
  41. Santilli M, Pelfini M (2002) Dendrogeomorphology and dating of debris flows in the Valle del Gallo Central Alps, Italy. Dendrochronologia 20(3):269–284CrossRefGoogle Scholar
  42. Santilli M, Pelfini M, Citterio M, Turri S (2005) Landscape history in the subalpine karst region of Moncodeno (Lombardy prealps, Northern Italy). Dendrochronologia 23:19–27CrossRefGoogle Scholar
  43. Schöne BR, Schweingruber FH (2001) Dendrochronological studies of natural reforestation of the Alps exemplified on an Inner-alpine dry Valley (Ramosch, Lower Engadine, Switzerland). Bot Helv 111(2):151–168Google Scholar
  44. Schraml K, Thomschitz B, McArdell B, Graf C, Hungr O, Kaitna R (2015) Modeling debris-flow runout pattern on a forested alpine fan with different dynamic simulation models. In: Lollino G, Giordan D, Crosta GB, Corominas J, Azzam R, Wasowski J, Sciarra N (eds) Engineering geology for society and territory - volume 2. Landslide Processes. Taylor & Francis, London, pp 1673–1676Google Scholar
  45. Schweingruber FH (1988) Tree rings, basics and applications of dendrochronology. Kluwer Academic Publisher, DordrechtGoogle Scholar
  46. Schweingruber FH, Eckstein D, Serre-Bachet F, Bräker OU (1990) Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia 8:9–38Google Scholar
  47. Scotton P, Genevois R, Moro F, Zorzi L, Girardi G, Praticelli N (2011) The debris-flows monitoring system of acquabona torrent (Cortina d’Ampezzo, Belluno, Italy) International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Proceedings, pp. 595-603.
  48. Shroder JF (1980) Dendrogeomorphology: review and new techniques of tree-ring dating. Prog Phys Geogr 4:161–188CrossRefGoogle Scholar
  49. Stoffel M, Bollschweiler M (2008) Tree-ring analysis in natural hazards research - an overview. Nat Hazards Earth Syst Sci 8(2):187–202CrossRefGoogle Scholar
  50. Stoffel M, Lièvre I, Comus D, Grichting MA, Raetzo H, Gärtner HW, Monbaron M (2005) 400 years of debris-flow activity and triggering weather conditions: Ritigraben, Valais, Switzerland. Arct Antarct Alp Res 37(3):387–395CrossRefGoogle Scholar
  51. Stoffel M, Bollschweiler M, Butler DR, Luckman BH (2010) Tree rings and natural hazards: a state-of-art. Advances in Global Change Research 41, Springer Science & Business Media. 2010,505ppGoogle Scholar
  52. Szymczak S, Bollschweiler M, Stoffel M, Dikau R (2010) Debris-flow activity and snow avalanches in a steep watershed of the Valais Alps (Switzerland): dendrogeomorphic event reconstruction and identification of triggers. Geomophology 116:107–114. CrossRefGoogle Scholar
  53. Takahashi T, Ashida K, Swai K (1981) Delineation of debris flow hazard areas. Erosion and sediment transport in Pacific rim steeplands. Int Assoc Hydrol Sci Pub 132:589–603Google Scholar
  54. Tattoni C, Ciolli M, Ferretti F (2011) The fate of priority areas for conservation in protected areas: a fine-scale Markov chain approach. Environ Manag 47(2):263–278. CrossRefGoogle Scholar
  55. Tattoni C, Ianni E, Geneletti D, Zatelli P, Ciolli M (2017) Landscape changes, traditional ecological knowledge and future scenarios in the Alps: a holistic ecological approach. Sci Total Environ 579:27–36. CrossRefGoogle Scholar
  56. TSAP by RINNTECH e.K. Available at: Accessed 30 May 2017
  57. Tumajer J, Treml V (2015) Reconstruction ability of dendrochronology in dating avalanche events in the Giant Mountains, Czech Republic. Dendrochronologia 34:1–9. CrossRefGoogle Scholar
  58. Voiculescu M, Onaca A (2014) Spatio-temporal reconstruction of snow avalanche activity using dendrogeomorphological approach in Bucegi Mountains Romanian Carpathians. Cold Reg Sci Technol 104-105:63–75. CrossRefGoogle Scholar
  59. Volkwein A, Schellenberg K, Labiouse V, Agliardi F, Berger F, Bourrier F, Dorren LKA, Gerber W, Jaboyedoff M (2011) Rockfall characterisation and structural protection – a review. Nat Hazards Earth Syst Sci 11:2617–2651CrossRefGoogle Scholar
  60. Winchester V, Gärtner H, Bezzi M (2007) Dendrogeomorphological applications, Geomorphological Variations pp 183–203Google Scholar
  61. Zolezzi G, Besio G, Bezzi M, Chesini A, Costi M, Dalla Valle L, De Leo F, Dotto A, Ferronato N, Gallerani G, Gobbi S, Guirreri D, Maier A, Pedon F, Spada D, Tosi T, Vella E, Beqiri E, Caka A, Cekrezi B, Fufaj F, Gjini B, Haxhi N, Kraja X, Omeri A, Shyti M, Zhidro M, Floqi T, Lami I (2016) Erosione costiera e gestione fluviale in un paese emergente: baia di Lalzi, Albania. Atti XXXV Convegno di Idraulica e Costruzioni Idrauliche, pp. 1215-1218, Bologna, 15-16 Settembre. ISBN – 9788898010400Google Scholar

Copyright information

© Società Italiana di Fotogrammetria e Topografia (SIFET) 2018

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Civile Ambientale e MeccanicaUniversità di TrentoTrentoItaly

Personalised recommendations