Applied Geomatics

, Volume 10, Issue 4, pp 295–316 | Cite as

Digital documentation and restoration tools reusing existing imagery: a multipurpose model of the Neptune’s Fountain in Bologna

  • Fabrizio Ivan Apollonio
  • Massimo Ballabeni
  • Silvia BertacchiEmail author
  • Federico Fallavollita
  • Riccardo Foschi
  • Marco Gaiani
Original Paper


On the occasion of the recent restoration of the sixteenth century Neptune’s Fountain in Bologna, promoted by the municipality in 2015 to preserve one of the major town’s landmark, high-quality imagery has been acquired for documenting the current state of preservation of the marble and bronze surfaces before and during the restoration phases. Starting from this available detailed photographic campaign and using new tools developed to solve problems linked with some limitations of the captured imagery, authors produced a photogrammetry-based 3D model of the monumental sculpture group, reliable for both geometric features and colour reproduction consistency, in order to be used to support the supplementary activities not foreseen in the original project. The paper presents methods and techniques implemented to produce the 3D model of the fountain, besides its main actual applications as a basic tool to support different restoration activities: (i) reliable documentation of the actual state; (ii) high-quality visualization and rendering; (iii) technical outcomes and graphical representation extraction; (iv) study of original and current water supply system and simulation of the new project for the jets system and watergames; (v) new lighting design simulation; (vi) structural analysis; (vii) support to preliminary analysis and design studies related to hardly accessible areas; (viii) surface cleaning analysis; (ix) base for filling gaps or missing elements through 3D printing; (x) support for data modelling and semantic-based diagrams.


Photographic documentation Automatic photogrammetry Visual simulation 3D digital models Color management Physically based rendering 



The Bologna City Council supported the present research. The authors would like to thank the people involved in the project: Fabio Andreon and Manuela Faustini (Municipality of Bologna); Gisella Capponi (Director of ISCR); Fabio Aramini, Dora Catalano, Patrizia Governale, Vilma Basilissi (ISCR); Pier Paolo Diotallevi, Gabriele Bitelli, Maurizio Mancini, Francesco Ceccarelli, Giovanni Naldi, Sandra Cristino, Elisa Franzoni, Cristiana Bragalli, Claudio Galli (University of Bologna); Marco Callieri, Matteo Dellepiane, Federico Ponchio, Roberto Scopigno (CNR-ISTI); LaMoViDA Lab (Dept. of Architecture, University of Bologna) for the 3D printing of the missing piece of the Neptune’s trident; LUCE Laboratory (Department of Design, Politecnico di Milano) for the collaboration in the lighting analysis and design.


  1. Adobe RGB (1998) Color image encoding. Accessed 23rd March 2018
  2. Agisoft (2017) Accessed 20 Sept 2017
  3. Apollonio FI (2016) Classification schemes for visualization of uncertainty in digital hypothetical reconstruction. In: Münster S, Pfarr-Harfst M, Kuroczyński P, Ioannides M (eds) 3D research challenges in cultural heritage II, Lecture notes in computer science, vol 10025. Springer, Cham, pp 173–197. CrossRefGoogle Scholar
  4. Apollonio FI, Ballabeni A, Gaiani M, Remondino F (2014) Evaluation of feature-based methods for automated network orientation. Int Arch Photogramm Remote Sens Spat Inf Sci XL-5:47–54. CrossRefGoogle Scholar
  5. Apollonio FI, Gaiani M, Foschi R (2016) Una nuova acqua per la Fontana del Nettuno di Bologna: la simulazione di progetto del sistema degli zampilli - New water for the Neptune Fountain in Bologna: simulation of the design of the multi-jet system. Disegnare idee immagini 53:68–79Google Scholar
  6. Apollonio FI, Basilissi V, Callieri M, Dellepiane M, Gaiani M, Ponchio F, Rizzo F, Rubino AR, Scopigno R, Sobrà G (2017a) A 3D-centered information system for the documentation of a complex restoration intervention. J Cult Herit 29:89–99. CrossRefGoogle Scholar
  7. Apollonio FI, Gaiani M, Basilissi W, Rivaroli L (2017b) Photogrammetry driven tools to support the restoration of open-air bronze surfaces of sculptures: an integrated solution starting from the experience of the Neptune Fountain in Bologna. Int Arch Photogramm Remote Sens Spat Inf Sci XLII-2(W3):47–54. CrossRefGoogle Scholar
  8. Callieri M, Chica A, Dellepiane M, Besora I, Corsini M, Moyés J, Ranzuglia G, Scopigno R, Brunet P (2011) Multiscale acquisition and presentation of very large artifacts: the case of Portalada. J Comput Cult Herit 3(4):1–20. CrossRefGoogle Scholar
  9. Cheung V, Westland S (2006) Methods for optimal color selection. J Imaging Sci Technol 50(5):481–488(8). CrossRefGoogle Scholar
  10. CloudCompare (2017) Accessed 20 Sept 2017
  11. Comune di Bologna (2017) Accessed 20 Dec 2017
  12. DCRaw (2017) Accessed 20 Sept 2017
  13. Fassi F, Fregonese L, Ackermann S, De Troia V (2013) Comparison between laser scanning and automated 3D modelling techniques to reconstruct complex and extensive cultural heritage areas. Int Arch Photogramm Remote Sens Spat Inf Sci XL-5/W1:73–80. CrossRefGoogle Scholar
  14. Gaiani M (ed) (2015) I portici di Bologna. Architettura, modelli 3D e ricerche tecnologiche. BUP, BolognaGoogle Scholar
  15. Gaiani M, Apollonio FI, Ballabeni A, Remondino F (2016a) A technique to ensure color fidelity in automatic photogrammetry. In: Gadia D (ed) Colour and colorimetry. Multidisciplinary contributions, vol XII B. Gruppo del Colore - Associazione Italiana Colore, Milano, pp 53–66Google Scholar
  16. Gaiani M, Remondino F, Apollonio FI, Ballabeni A (2016b) An advanced pre-processing pipeline to improve automated photogrammetric reconstructions of architectural scenes. Remote Sens 8(3):178. CrossRefGoogle Scholar
  17. Gaiani M, Apollonio FI, Ballabeni A, Remondino F (2017) Securing color fidelity in 3D architectural heritage scenarios. Sensors 17(2437). CrossRefGoogle Scholar
  18. Gonizzi Barsanti S, Guidi G (2017) A geometric processing workflow for transforming reality-based 3D models in volumetric meshes suitable for FEA. Int Arch Photogramm Remote Sens Spat Inf Sci XLII-2/W3:331–338. CrossRefGoogle Scholar
  19. Green P, MacDonald LW (eds) (2002) Colour engineering: achieving device independent colour. Wiley, HobokenGoogle Scholar
  20. Hamed AMY, Abdelhafeez A (2016) Simplified approach to convert 3D laser scanning models to FEM-models applied on ancient statue in Egypt. In: Amoêda R, Lira S, Pinheiro C (eds) Heritage 2016 Proceedings of the 5th International Conference on Heritage and Sustainable Development 1, vol 7. Green Lines Institute for Sustainable Development, Portugal, pp 1317–1327Google Scholar
  21. Hong G, Luo MR, Rhodes PA (2001) A study of digital camera colorimetric characterization based on polynomial modeling. Color Res Appl 26(1):76–84.<76::AID-COL8>3.0.CO;2-3 CrossRefGoogle Scholar
  22. ISO (2006) Standardization, I.O.F. Graphic technology and photography—colour characterisation of digital still cameras (DSCs) 2006. ISO 17321–1:2006, DecemberGoogle Scholar
  23. Kajiya JT (1986) The rendering equation. In: SIGGRAPH ‘86 proceedings of the 13th annual conference on computer graphics and interactive techniques. ACM, New York, pp 143–150. CrossRefGoogle Scholar
  24. Lempitsky V, Ivanov D (2007) Seamless mosaicing of image-based texture maps. IEEE CVPR Proc 1–6.
  25. Lensch HPA, Kautz J, Goesele M, Seidel H-P (2003) Image-based reconstruction of spatial appearance and geometric detail. ACM Trans Graph 22(2):234–257CrossRefGoogle Scholar
  26. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110. CrossRefGoogle Scholar
  27. Markiewicz JS, Podlasiak P, Zawieska D (2015) Attempts to automate the process of generation of orthoimages of objects of cultural heritage. Int Arch Photogramm Remote Sens Spat Inf Sci XL-5/W4:393–401. CrossRefGoogle Scholar
  28. Mavromati D, Petsa E, Karras GE (2002) Theoretical and practical aspects of archaeological orthoimaging. Int Arch Photogramm Remote Sens 34(5):413–418Google Scholar
  29. McCamy CS, Marcus H, Davidson JG (1976) A color rendition chart. J Appl Photogr Eng 2(3):95–99Google Scholar
  30. Melgosa M, Alman DH, Grosman M, Gómez-Robledo L, Trémeau A, Cui G, García PA, Vázquez D, Li C, Luo MR (2013) Practical demonstration of the CIEDE2000 corrections to CIELAB using a small set of sample pairs. Color Res Appl 38:429–436. CrossRefGoogle Scholar
  31. Meshlab (2017) Accessed 20 Sept 2017
  32. Morel J-M, Yu G (2009) ASIFT: a new framework for fully affine invariant comparison. SIAM J Imaging Sci 2(2):438–469. CrossRefGoogle Scholar
  33. Muja M, Lowe DG (2009) Fast approximate nearest neighbors with automatic algorithm configuration. In: Ranchordas A, Araújo H (eds) VISAPP (1). INSTICC Press, Milan, pp 331–340Google Scholar
  34. Oleari C, Melgosa M, Huertas R (2011) Generalization of color-difference formulas for any illuminant and any observer by assuming perfect color constancy in a color-vision model based on the OSA-UCS system. J Opt Soc Am A Opt Image Sci Vis 28(11):2226–2234. CrossRefGoogle Scholar
  35. Perlin K (1985) An image synthesizer. In: SIGGRAPH ‘85 Proceedings of the 12th annual conference on computer graphics and interactive techniques. ACM, New York, pp 287–296. CrossRefGoogle Scholar
  36. Pharr M, Humphreys G (2016) Physically based rendering: from theory to implementation. Morgan Kaufmann, San FranciscoGoogle Scholar
  37. RAGS (2017) Accessed 20 Dec 2017
  38. Reinhard E, Khan EA, Akyüz AO, Johnson GM (2008) Colour imaging fundamentals and applications. A K Peters, NatickGoogle Scholar
  39. Remondino F, Spera MG, Nocerino E, Menna F, Nex F (2014) State of the art in high density image matching. Photogramm Rec 29(146):144–166. CrossRefGoogle Scholar
  40. Rossi M, Marini D, Rizzi A (2004) Methods and application for photorealistic rendering and lighting of ancient buildings. J Cult Herit 5(3):291–300. CrossRefGoogle Scholar
  41. Scopigno R, Cignoni P, Pietroni N, Callieri M, Dellepiane M (2017) Digital fabrication techniques for cultural heritage: a survey. Comput Graphics Forum 36(1):6–21. CrossRefGoogle Scholar
  42. Sederberg TW, Zheng J, Bakenov A, Nasri A (2003) T-splines and T-NURCCs. ACM Trans Graph 22(3):477–484. CrossRefGoogle Scholar
  43. Sharma G, Wu W, Dalal EN (2000) The CIEDE2000 color-difference formula: implementation notes, supplementary test data, and mathematical observations. Color Res Appl 30:21–30. CrossRefGoogle Scholar
  44. Song T, Luo MR (2000) Testing color-difference formulae on complex images using a CRT monitor. In: Proceedings of IS&T and SID Eighth Color Imaging Conference. Society for Imaging Science and Technology, pp 44–48(5)Google Scholar
  45. Tucci G, Guardini N (2014) Rilevo e modellazione 3D a supporto dell’analisi strutturale: un approccio metodologico e sostenibile per il patrimonio architettonico. Atti 18° Conferenza ASITA, pp 1197–1209Google Scholar
  46. Tuttle RJ (2001) Piazza Maggiore. Studi su Bologna nel Cinquecento. Marsilio, VeneziaGoogle Scholar
  47. Tuttle RJ (2015) The Neptune fountain in Bologna. Bronze, marble and water in the making of a papal city. Brepols-Harvey Miller, New YorkGoogle Scholar
  48. Westin SH, Arvo J, Torrance KE (1992) Predicting reflectance functions from complex surfaces. In: SIGGRAPH ‘92 proceedings of the 19th annual conference on computer graphics and interactive techniques. ACM, New York, pp 255–264. CrossRefGoogle Scholar
  49. Wu C, Agarwal S, Curless B, Seitz SM (2011) Multicore bundle adjustment. IEEE CVPR Proc:3057–3064.

Copyright information

© Società Italiana di Fotogrammetria e Topografia (SIFET) 2018

Authors and Affiliations

  1. 1.Dipartimento di ArchitetturaAlma Mater Studiorum – Università di BolognaBolognaItaly
  2. 2.CIRI ICT Centro Interdipartimentale di Ricerca Industriale su ICTAlma Mater Studiorum – Università di BolognaBolognaItaly

Personalised recommendations