Advertisement

Applied Geomatics

, Volume 6, Issue 1, pp 1–15 | Cite as

UAV for 3D mapping applications: a review

  • Francesco NexEmail author
  • Fabio Remondino
Original Paper

Abstract

Unmanned aerial vehicle (UAV) platforms are nowadays a valuable source of data for inspection, surveillance, mapping, and 3D modeling issues. As UAVs can be considered as a low-cost alternative to the classical manned aerial photogrammetry, new applications in the short- and close-range domain are introduced. Rotary or fixed-wing UAVs, capable of performing the photogrammetric data acquisition with amateur or SLR digital cameras, can fly in manual, semiautomated, and autonomous modes. Following a typical photogrammetric workflow, 3D results like digital surface or terrain models, contours, textured 3D models, vector information, etc. can be produced, even on large areas. The paper reports the state of the art of UAV for geomatics applications, giving an overview of different UAV platforms, applications, and case studies, showing also the latest developments of UAV image processing. New perspectives are also addressed.

Keywords

UAV Photogrammetry DSM Archeology Agriculture Emergency Urban 

Notes

Acknowledgments

The work was partly supported by the 3M and CIEM project (co-founded Marie-Curie Actions 7th F.P.—PCOFOUND- GA-2008-226070, acronym “Trentino Project”). The authors are really thankful to Zenit (http://www.zenit-sa.com), Dr Deni Suwardhi (ITB Bandung, Indonesia), Dr Catur Aries Rokhmana (Gadjah Mada University, Indonesia), and Prof. Juan José Fernández Martin (Valladolid University, Spain) for providing some datasets presented in the article and useful discussions on the UAV topic.

References

  1. Anai T, Sasaki T, Osaragi K, Yamada M, Otomo F, Otani H (2012) Automatic exterior orientation procedure for low-cost UAV photogrammetry using video image tracking technique and GPS information. Int. Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Melbourne, Australia, 39(7)Google Scholar
  2. Barazzetti L, Remondino F, Scaioni M (2010) Fully automated UAV image-based sensor orientation. Int. Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Calgary, Canada, 38(1), on CD-ROMGoogle Scholar
  3. Barazzetti L, Scaioni M, Remondino F (2011) Orientation and 3D modeling from markerless terrestrial images: combining accuracy with automation. Photogramm Rec 25(132):356–381CrossRefGoogle Scholar
  4. Bendea H, Boccardo P, Dequal S, Giulio Tonolo F, Marenchino D, Piras M (2008) Low cost UAV for post-disaster assessment. In: Int. Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China, 37(B1): 1373–1379Google Scholar
  5. Berni JAJ, Zarco-Tejada PJ, Suárez L, González-Dugo V, Fereres E (2009a) Remote sensing of vegetation from UAV platforms using lightweight multispectral and thermal imaging sensors. Int. Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Hannover, Germany, 38 (1-4-7/W5)Google Scholar
  6. Berni JAJ, Zarco-Tejada PJ, Suárez L, Fereres E (2009b) Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. Trans Geosci Remote Sens 47:722–738CrossRefGoogle Scholar
  7. Bolten A, Bareth G (2012) Introducing a low-cost Mini-UAV for Thermal- and Multispectral-Imaging. In: Int. Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Melbourne (Australia), 39(1)Google Scholar
  8. Brown DC (1976) The bundle adjustment—progress and prospects. In: International Archives of Photogrammetry, 21(3)Google Scholar
  9. Çabuk A, Deveci A, Ergincan F (2007) Improving heritage documentation. GIM Int 21(9)Google Scholar
  10. Chiabrando F, Nex F, Piatti D, Rinaudo F (2011) UAV and RPV systems for photogrammetric surveys in archeological areas: two tests in the piedmont region (ITALY). J Archaeol Sci 38:697–710. doi: 10.1016/j.jas.2010.10.022, ISSN: 0305–4403CrossRefGoogle Scholar
  11. Chou T-Y, Yeh M-L, Chen YC, Chen YH (2010) Disaster monitoring and management by the unmanned aerial vehicle technology. In: Int. Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vienna, Austria, 38(7B):137–142Google Scholar
  12. Colomina I, Aigner E, Agea A, Pereira M, Vitoria T, Jarauta R, Pascual J, Ventura J, Sastre J Brechbühler de Pinho G, Derani A, Hasegawa J (2007) The uVISION project for helicopter-UAV photogrammetry and remote-sensing. Proc. of the 7th International Geomatic Week, Barcelona, SpainGoogle Scholar
  13. Colomina I, Blázquez M, Molina P, Parés ME, Wis M (2008) Towards a new paradigm for high-resolution low-cost photogrammetry and remote sensing. In: Int. Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China, 37 (B1): 1201–1206Google Scholar
  14. De Agostino M, Manzino AM, Piras M (2010) Performances comparison of different MEMS-based IMUs. Record—IEEE PLANS, Position Location and Navigation Symposium, Art. No. 5507128: 187–201Google Scholar
  15. Dermanis A (1994) The photogrammetric inner constraints. ISPRS J Photogramm Remote Sens 49(1):25–39CrossRefGoogle Scholar
  16. Eisenbeiss H (2009) UAV photogrammetry. Dissertation ETH No. 18515, Institute of Geodesy and Photogrammetry, ETH Zurich, Switzerland, Mitteilungen 105Google Scholar
  17. Eugster H, Nebiker S (2008) UAV-based augmented monitoring– real-time georeferencing and integration of video imagery with virtual globes. In: Int. Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China, 37(B1): 1229–1235Google Scholar
  18. Everaerts J (2008) The Use of Unmanned Aerial Vehicles (UAVS) for Remote Sensing and Mapping. In: Int. Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China, 37 (B1):1187–1192Google Scholar
  19. Fiorillo F, Jimenez Fernandez-Palacios B, Remondino F, Barba S (2012) 3D Surveying and modeling of the archeological area of Paestum, Italy. Proc. 3rd Inter. Conference Arquelogica 2.0, 2012, Sevilla, SpainGoogle Scholar
  20. Franceschini N, Ruffier F, Serres J (2007) A bio-inspired flying robot sheds light on insect piloting abilities. Curr Biol 17(4):329–335CrossRefGoogle Scholar
  21. Furukawa Y, Ponce J (2010) Accurate, dense, and robust multiview stereopsis. IEEE Trans Pattern Anal Mach Intell (PAMI) 32(8):1362–1376CrossRefGoogle Scholar
  22. Gerke S, Morin K, Downey M, Boehrer N, Fuchs T (2010) Semi-global matching: an alternative to LiDAR for DSM generation? Int. Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Calgary, Canada, 38 (1), on CD-ROMGoogle Scholar
  23. Granshaw SI (1980) Bundle adjustment method in engineering photogrammetry. Photogramm Rec 10(56):111–126Google Scholar
  24. Grenzdoffer G, Niemeyer F, Schmidt F (2012) Development of four vision camera system for micro-UAV. Int. Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Melbourne, Australia, 2012 39(1)Google Scholar
  25. Grenzdörffer GJ, Engel A, Teichert B (2008) The photogrammetric potential of low-cost UAVs in forestry and agriculture. Int. Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China, 2008 37(B1): 1207–1213Google Scholar
  26. Gruen A, Beyer HA (2001) System calibration through self-calibration. Calibration and orientation of cameras in computer vision. In: Gruen H (ed) Springer Series in Information Sciences., pp 163–194Google Scholar
  27. Haarbrink RB, Koers E (2006) Helicopter UAV for Photogrammetry and Rapid Response. Int. Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Antwerp, Belgium, 36(1/W44)Google Scholar
  28. Hartley R, Zisserman A (2004) Multiple View Geometry in Computer Vision. Cambridge University PressGoogle Scholar
  29. Hartmann W, Tilch HS, Eisenbeiss H, Schindler K (2012) Determination of the UAV position by automatic processing of thermal images. Int. Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Melbourne, Australia, 39(5)Google Scholar
  30. Hirschmüller H (2008) Stereo processing by semi-global matching and mutual information. IEEE Trans Pattern Anal Mach Intell 30(2):328–341CrossRefGoogle Scholar
  31. Huckridge DA, Ebert RR (2008) Miniature imaging devices for airborne platforms. Proc SPIE 7113:71130M, doi:  10.1117/12.799635
  32. Kohoutek TK, Eisenbeiss H (2012) Processing of UAV-based range imaging data to generate detailed elevation models of complex natural structures. Int. Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Melbourne, Australia, 39(1)Google Scholar
  33. Konolige K, Agrawal M (2008) Frameslam: from bundle adjustment to realtime visual mapping. IEEE J Robot Autom 24(5):1066–1077Google Scholar
  34. Lambers K, Eisenbeiss H, Sauerbier M, Kupferschmidt D, Gaisecker T, Sotoodeh S, Hanusch T (2007) Combining photogrammetry and laser scanning for the recording and modeling of the late intermediate period site of Pinchango Alto, Palpa, Peru. J Archaeol Sci 34(10):1702–1712CrossRefGoogle Scholar
  35. Lange S, Sünderhauf N, Neubert P, Drews S, Protzel P (2011) Autonomous corridor flight of a UAV using a low-cost and light-weight RGB-D camera. In: Advances in Autonomous Mini Robots, Proc. 6th AMiRE Symposium, 183–192, ISBN 978-3-642-27481-7Google Scholar
  36. Manyoky M, Theiler P, Steudler D, Eisenbeiss H (2011) Unmanned aerial vehicle in cadastral applications. Int. Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Zurich, Switzerland, 38 (1/C22)Google Scholar
  37. Martinez JR, Merino L, Caballero F, Ollero A, Viegas DX (2006) Experimental results of automatic fire detection and monitoring with UAVs. For Ecol Manag 234S(2006):S232CrossRefGoogle Scholar
  38. Meier L, Tanskanen P, Fraundorfer F, Pollefeys M (2011) The PIXHAWK open-source computer vision framework for MAVS. Int. Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Zurich, Switzerland, 38(1/C22)Google Scholar
  39. Molina P, Colomina I, Vitoria T, Silva PF, Skaloud J, Kornus W, Prades R, Aguilera C (2012) Searching lost people with UAVs: the system and results of the close-search project. Int. Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Melbourne, Australia, 39(1)Google Scholar
  40. Moore RJD, Thurrowgood S, Soccol D, Bland D, Srinivasan MV (2011) A bio-inspired stereo vision system for guidance of autonomous aircraft. In Asim Bhatti (Ed.) Advances in theory and applications of stereo vision. Rijeka, Croatia: InTech. pp. 305–326Google Scholar
  41. Nagai M, Shibasaki R, Manandhar D, Zhao H (2004) Development of digital surface and feature extraction by integrating laser scanner and CCD sensor with IMU. Int. Archives of Photogrammetry, Remote Sensing and Spatial Information Science, Istanbul, Turkey, 35(B5)Google Scholar
  42. Neitzel F, Klonowski J (2011). Mobile 3D mapping with low-cost UAV system. Int. Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Zurich, Switzerland, 38 (1/C22)Google Scholar
  43. Newcombe L (2007) Green fingered UAVs. Unmanned Vehicle.Google Scholar
  44. Niethammer U, Rothmund S, James MR, Traveletti J, Joswig M (2010) UAV-based remote sensing of landslides. Int. Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Newcastle upon Tyne, UK, 38 (5), on CD-ROMGoogle Scholar
  45. Niranjan S, Gupta G, Sharma N, Mangal M, Singh V (2007) Initial efforts toward mission-specific imaging surveys from aerial exploring platforms: UAV. In: Map World Forum, Hyderabad, India, 2007; on CD-ROMGoogle Scholar
  46. Nuechter A, Lingemann K, Hertzberg J, Surmann H (2007) 6D SLAM for 3D mapping outdoor environments. J Field Robot (JFR) Spec Issue Quant Perform Eval Robot Intell Syst 24(8–9):699–722Google Scholar
  47. Oczipka M, Bemman J, Piezonka H, Munkabayar J, Ahrens B, Achtelik M, Lehmann F (2009) Small drones for geo-archeology in the steppes: locating and documenting the archeological heritage of the Orkhon Valley in Mongolia. Remote Sens Environ Monit GIS Appl Geol 7874:787406-1Google Scholar
  48. Pfeifer N, Glira P, Briese C (2012) Direct georeferencing with on board navigation components of light weight UAV platforms. Int. Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Melbourne, Australia, 39(7)Google Scholar
  49. Pierrot-Deseilligny M, Clery I (2011) APERO, An Open Source Bundle Adjustment Software for Automatic Calibration and Orientation of Set of Images. Int. Archives of Photogrammetry, Remote Sensing and Spatia Information Sciences, 38 (5/W16), Trento, Italy, on CD-ROMGoogle Scholar
  50. Pierrot-Deseilligny M, Paparoditis N (2006) A multiresolution and optimization-based image matching approach: an application to surface reconstruction from SPOT5-HRS stereo imagery. Int. Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Antalya, Turkey, 36 (1/W41), on CD-ROMGoogle Scholar
  51. Piras M, Marucco G, Charqane K (2010) Statistical analysis of different low cost GPS receivers for indoor and outdoor positioning. Record - IEEE PLANS, Position Location and Navigation Symposium, Art. No. 5507325: 838–849.Google Scholar
  52. Przybilla H-J, Wester-Ebbinghaus W (1979) Bildflug mit ferngelenktem Kleinflugzeug. Bildmessung und Luftbildwesen. Zeitschrift fuer Photogrammetrie und Fernerkundung. Herbert Wichman Verlag, KarlsruheGoogle Scholar
  53. Pueschel H, Sauerbier M, Eisenbeiss H (2008) A 3D model of Castle Landemberg (CH) from combined photogrammetric processing of terrestrial and UAV-based images. In: Int. Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences., pp 96–98, Beijing, ChinaGoogle Scholar
  54. Puri A, Valavanis P, Kontitsis M (2007) Statistical profile generation for traffic monitoring using real-time UAV based video data. Mediterranean Conference on Control & Automation, Athens, Greece, on CD-ROMGoogle Scholar
  55. Remondino F, Fraser C (2006) Digital cameras calibration methods: considerations and comparisons. Int Arch Photogramm Remote Sens Spat Inf Sci 36(5):266–272Google Scholar
  56. Remondino F, Gruen A, Von Schwerin J, Eisenbeiss H, Rizzi A, Sauerbier M, Richards-Rissetto, H (2009) Multi-sensors 3D documentation of the Maya site of Copan. Proc. of 22nd CIPA Symposium, Kyoto, Japan, on CD-ROMGoogle Scholar
  57. Remondino F, Barazzetti L, Nex F, Scaioni M, Sarazzi D (2011) UAV photogrammetry for mapping and 3D modeling - Current status and future perspectives. In: Int. Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(1/C22). ISPRS Conference UAV-g, Zurich, SwitzerlandGoogle Scholar
  58. Réstas A (2006) The regulation unmanned aerial vehicle of the Szendro fire department supporting fighting against forest fires 1st in the world! For Ecol Manag 234SGoogle Scholar
  59. Rinaudo F, Chiabrando F, Lingua A, Spanò A (2012) Archaeological site monitoring: UAV photogrammetry could be an answer. Int. Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Melbourne, Australia, 39(5)Google Scholar
  60. Robertson DP, Cipolla R (2009) Structure from Motion. Practical Image Processing and Computer Vision, John Wiley, Varga, M (eds)Google Scholar
  61. Sanna A, Pralio B (2005) Simulation and control of mini UAVs. Proc. 5th WSEAS Int. Conference on Simulation, Modeling and Optimization, pp. 135–141Google Scholar
  62. Schafroth D, Bouabdallah S, Bermes C, Siegwart R (2009) From the test benches to the first prototype of the muFly micro helicopter. J Intell Robot Syst 54(1–3):245–260CrossRefGoogle Scholar
  63. Seitz S, Curless B, Diebel J, Scharstein D, Szeliski R (2006) A comparison and evaluation of multi-view stereo reconstruction algorithms. Proc. IEEE Conf. CVPR’06, New York, 17–22 June 2006, 1:519–528Google Scholar
  64. Smith JG, Dehn J, Hoblitt RP, LaHusen RG, Lowenstern JB, Moran SC, McClelland L, McGee KA, Nathenson M, Okubo PG, Pallister JS, Poland MP, Power JA, Schneider DJ, Sisson TW (2009) Volcano monitoring. Geological Monitoring, Geological Society of America, Eds Young and Norby, 273–305, doi:  10.1130/2009
  65. Snavely S, Seitz SM, Szeliski R (2007) Modeling the world from internet photo collections. Int J Comput Vis 2(80):189–210Google Scholar
  66. Snavely N, Seitz SM, Szeliski R (2008) Modeling the world from Internet photo collections. Int J Comput Vis 80(2):189–210CrossRefGoogle Scholar
  67. Stempfhuber W, Buchholz M (2011) A precise, low-cost RTK GNSS system for UAV applications. Int. Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Zurich, Switzerland, 38 (1/C22)Google Scholar
  68. Strasdat H, Montiel JMM, Davison A J (2010) Scale drift-aware large-scale monocular SLAM. Robotics: Science and SystemsGoogle Scholar
  69. Thamm H P, Judex M (2006) The “Low cost drone”—An interesting tool for process monitoring in a high spatial and temporal resolution. Int. Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Enschede, The Netherlands, 36 (7)Google Scholar
  70. Triggs W, McLauchlan P, Hartley R, Fitzgibbon A (2000) Bundle adjustment – A modern synthesis. Eds W. Triggs, A. Zisserman, and R Szeliski Vision Algorithms: Theory and Practice, LNCS, Springer Verlag, pp. 298–375.Google Scholar
  71. Vallet J, Panissod F, Strecha C, Tracol M (2011) Photogrammetric performance of an ultra-light weight Swinglet UAV. Int. Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Zurich, Switzerland, 38 (1/C22)Google Scholar
  72. Verhoeven GJJ (2009) Providing an archeological bird’s-eye view—an overall picture of Ground—based means to execute low-altitude aerial photography (LAAP) in Archeology. Archaeol Prospect 16:233–249. doi: 10.1002/arp.354 CrossRefGoogle Scholar
  73. Vierling LA, Fersdahl M, Chen X, Li Z, Zimmerman P (2006) The short wave aerostat-mounted imager (SWAMI): a novel platform for acquiring remotely sensed data from a tethered balloon. Remote Sens Environ 103:255–264CrossRefGoogle Scholar
  74. Von Blyenburg P (1999) UAVs-Current Situation and Considerations for the Way Forward. RTO-AVT Course on Development and Operation of UAVs for Military and Civil Applications, 1999Google Scholar
  75. Vu H, Keriven R, Labatut P, Pons J-P (2009) Towards high-resolution large-scale multi-view stereo. Proc. IEEE Conf. CVPR’09, 1430–1437Google Scholar
  76. Wang J, Garratt M, Lambert A, Wang JJ, Han S, Sinclair D (2008) Integration of GPS/INS/vision sensors to navigate unmanned aerial vehicles. Int. Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China, 37 (B1): 963–969Google Scholar
  77. Wang WQ, Peng QC, Cai JY (2009) Waveform-diversity-based millimeter-wave UAV SAR remote sensing. Trans Geosci Remote Sens 47(3):691–700CrossRefGoogle Scholar
  78. Wendel A, Maurer M, Graber G, Pock T, Bischof H (2012) Dense reconstruction on-the-fly. Proc. IEEE Int. CVPR Conference, Providence, USAGoogle Scholar
  79. Wu C (2011) VisualSFM: A Visual Structure from Motion System, http://www.cs.washington.edu/homes/ccwu/vsfm/
  80. Zhang C (2008) An UAV-based photogrammetric mapping system for road condition assessment. In: International Archives of Photogrammetry, Remote Sensing and Spatial Information Science, Beijing, China, 37Google Scholar
  81. Zhou G (2009) Near real-time orthorectification and mosaic of small UAV video flow for time-critical event response. IEEE Trans Geosci Remote Sens 47(3):739–747CrossRefGoogle Scholar
  82. Zhu Q, Zhang Y, Wu B, Zhang Y (2010) Multiple close-range image matching based on self-adaptive triangle constraint. Photogramm Rec 25(132):437–453CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fotogrammetria e Topografia (SIFET) 2013

Authors and Affiliations

  1. 1.3D Optical Metrology UnitBruno Kessler Foundation (FBK)TrentoItaly

Personalised recommendations