Assessment the climate change impact on the future evapotranspiration and flows from a semi-arid environment

  • 6 Accesses


The present paper aims to evaluate future changes in evapotranspiration and flows from semi-arid environments, using Essaouira basin (Morocco) as an example. In order to achieve this objective, the Rural Genius model (GR2M) has been used under representative concentration pathway (RCPs) 2.6, 4.5 and 8.5 of Coupled Model Intercomparison Project (CIMP5) model. The statistical tests of Pettitt and Mann-Kendall were used to determine trend sense of evapotranspiration and flow series. For the historical evapotranspiration, the statistical tests show an upward of 4.2% from 1978 to 2005. Concerning the historical flows, they show an upward for Igrounzar and Zelten stations and downward for Adamna station. Using the same statistical tests and under the three RCP scenarios, the future evapotranspiration series shows an upward trend. The combined application of GR2M model results and statistical tests for the 2020–2050 period shows an upward trend in future flows of the Igrounzar station, Zelten and Adamna under RCPs 2.6 and 8.5 scenarios, with an excess of 20, 28.8 and 19.70%, respectively, for RCP 2.6 scenario and 44.4, 53.8 and 43.7%, respectively, for the RCP 8.5 scenario. For the same period and under the RCP 4.5 scenario, the future flows show a downward trend of 42.5%, 42.1% and 40.6% by the Igrounzar, Zelten and Adamna stations, respectively. However, the results of this paper can be a basis for decision-makers for better management and protection of water resources in the Essaouira watershed by building hillside reservoirs along the Igrounzar, Zelten and Ksob wadis.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. Agoumi A, Senoussi S, Yacoubi M, Fakhredine A, Sayouti EH, Mokssit A, Chikri N (1999) Changements climatiques et ressources en eau. Hydrogeol Appl 12:163–182

  2. Bahir M, Mennani A (2002) Problematique de la gestion des eaux souterraines au Maroc. Estud Geol 58:103–108

  3. Bahir M, Ouhamdouch S, Carreira PM (2016) La ressource en eau au Maroc face aux changements climatiques; cas de la nappe Plio-Quaternaire du bassin synclinale d’Essaouira. Comun Geol 103(1):35–44

  4. Belarbi H, Touaibia B, Boumechra N, Amiar S, Baghli N (2015) Sécheresse et modification de la relation pluiedébit: Cas du bassin versant de l’Oued Sebdou (Algérie Occidentale). Hydrol Sci J 62:124–136

  5. Bouanani R, Baba-Hamed K, Bouanani A (2013) Utilisation d’un modèle global pour la modélisation pluie-débit: cas du bassin d’Oued Sikkak (NW algérien). Nat Technol 9:61–66

  6. Dezetter A, Girard S, Paturel JE, Mahé G, Ardoin-Bardin S, Servat E (2008) Simulation of runoff in West Africa: is there a single data-model combination that produces the best simulation results? J Hydrol 354:203–212

  7. Driouech F, Mahé G, Déqué M, Dieulin C, El Heirech T, Milano M, Benabdelfadel A, Rouche N (2010) Evaluation d’impacts potentiels de changements climatiques Sur l’hydrologie du bassin versant de la Moulouya au Maroc. In: global change: facing risks and threats to water resources (Proc. VIth FRIEND world Conf., Fes, Morocco, October 2010), 561–567. IAHS Publ. 340. IAHS Press

  8. Duffaud F, Brun L, Planchot B (1966) Bassin du Sud-Ouest Marocain (SW Morocco Basin). In: Reyre (ed) Bassin Sédimentaire du Littoral Africain, partie I, Paris, pp 5–12

  9. El Gayar A, Hamed Y (2018) Climate change and water resources Management in Arab Countries. In: Kallel A, Ksibi M, Ben Dhia H, Khélifi N (eds) Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions. EMCEI. 2017. Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable Development). Springer, Cham

  10. Fekri A (1993) Contribution à l’étude hydrogéologique et hydrogéochimique de la zone synclinale d’Essaouira (Bassin synclinal d’Essaouira). Thèse de 3ème cycle, Université Cadi Ayyad, Maroc. 172p

  11. GIEC (2007) Summary for Policymakers. Climate Change 2007: Impacts, adaptation and vulnerability. In: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  12. Kendall MG (1975) Multivariate nonparametric tests for trend in water quality. Water Resour Bull 24(3):505–512

  13. Kouamẻ KF, Kouassi AM, N’guessan BTM, Kouao JM, Lasm T, Saley MB (2013) Analyse de tendances dans la relation pluie-débit dans un contexte de changements climatiques: cas du bassin versant du N’zo-Sassandra (Ouest de la Côte d’Ivoire). IJIAS 2:92–103

  14. Kour R, Patel N, Krishna AP (2016) Climate and hydrological models to assess the impact of climate change on hydrological regime: a review. Arab J Geosci 9:544–531.

  15. Mahé G, Paturel JE, Servat E, Conway D, Dezetter A (2005) The impact of landuse change on the water holding capacity and river discharge modelling in the Nakambe River, Burkina Faso. J Hydrol 300:33–43

  16. Makhlouf Z, Michel C (1994) A two-parameter monthly water balance model for French watersheds. J Hydrol 162:299–318

  17. Mann HB (1945) Nonparametric tests against trend. Econometrical 13:245–259

  18. Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18:50–60

  19. Meddi M, Talia M, Martin C (2009) Recent evolution of weather conditions and flows on the basin of Macta (northwest of Algeria). PhysioGeo 23:61–84

  20. Mokadem N, Redhaounia B, Besser H, Ayadi Y, Khelifi F, Hamad A, Hamed Y, Bouri S (2018) Impact of climate change on groundwater and the extinction of ancient “Foggara” and springs systems in arid lands in North Africa: a case study in Gafsa basin (central of Tunisia). Euro Mediterr J Environ Integr 3:28–14.

  21. Mouelhi S, Michel C, Perrin C, Andréassian V (2006) Stepwise development of a two-parameter monthly water balance model. J Hydrol 318:200–214

  22. Mouelhi S, Nemri S, Jebari S, Slimani M (2017) Coupling between a rain-runoff model, GR2M, and a rain generator to evaluate the transfer between two dams the Tunisian semi-arid Sidi Saad and El Houareb. IJIAS 19(4):944–959

  23. Nash JE, Sutcliffe JV (1970) River discharge forecasting through conceptual models. Part I - a discussion of principles. J Hydrol 10:282–290

  24. Ouhamdouch S, Bahir M (2017) Climate change impact on future rainfall and temperature in semi-arid areas (Essaouira Basin, Morocco). Environ Process 4:975–990

  25. Ouhamdouch S, Bahir M, Carreira PM, Kamel Z (2018a) Groundwater Responses to Climate Change in a Coastal Semi-arid Area from Morocco; Case of Essaouira Basin. In: Calvache ML et al (eds) Groundwater and Global Change in the Western Mediterranean Area. Environ Earth Sciences, pp 253–260.

  26. Ouhamdouch S, Bahir M, Carreira PM (2018b) Impact du changement climatique sur la ressource en eau en milieu semi-aride : exemple du bassin d'Essaouira (Maroc). RSE 31(1):13–27

  27. Perrin C, Michel C, Andréassian V (2003) Improvement of a parsimonious model for streamdischarge simulation. J Hydrol 279:275–289

  28. Pettitt AN (1979) A non-parametric approach to the change-point problem. Appl Stat 28(2):126–135

  29. Peybernès B, Bouaouda MS, Almeras Y, Ruget CH, Cugny P (1987) Stratigraphy of the Lias-Dogger deposits from Essaouira coastal basin (Morocco) before and during the beginning of oceanic accretion in the Central Atlantic; comparisons with the Agadir basin. CR Acad Sci 305:1449–1555

  30. PNUD-FEM (1998) Changements climatiques et ressources en forum régional sur les changements climatiques: Eau dans les pays du Maghreb, Algérie -Maroc-Tunisie, enjeux et perspectives. Projet RAB/94/G31

  31. Rwasoka DT, Madamombe CE, Gumindoga W, Kabobah AT (2014) Calibration, validation, parameter indentifiability and uncertainty analysis of a 2-parameter parsimonious monthly rainfall-runoff model in two catchments in Zimbabwe. Phys Chem Earth 67-69:36–46

  32. Sakaa B, Boulghobra N, Chaffai H, Hani A, Djabri L (2015) Application of GR2M for rainfall-runoff modeling in Kébir Rhumel watershed, north east of Algeria. World Appl Sci J 33(10):1623–1630

  33. Theodossiou N (2016) Assessing the impacts of climate change on the sustainability of groundwater aquifers. Application in Moudania aquifer in N. Greece Environ Process 3(4):1045–1061

  34. Thornthwaite CW (1948) An approach toward a rational classification of climate. Geor Rev 38:55–94

  35. Zeroual A, Meddi M, Bensaad S (2013) The impact of climate change on river flow in arid and semi-arid rivers in Algeria. Proceedings of H01, IAHS-IAPSO-IASPEI assembly, Gothenburg, Sweden, July 2013 (IAHS Publ. 359, 2013)

Download references


The authors would like to thank the Tensift Hydraulic Basin Agency for the climatic data of the Igrounzar, Zelten and Adamna stations.

Author information

Correspondence to Salah Ouhamdouch.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Responsible Editor: Zhihua Zhang

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ouhamdouch, S., Bahir, M., Ouazar, D. et al. Assessment the climate change impact on the future evapotranspiration and flows from a semi-arid environment. Arab J Geosci 13, 82 (2020).

Download citation


  • Essaouira basin
  • Climate change
  • Future flow
  • GR2M
  • Semi-arid