Advertisement

Geological heritage of Luxor and its vicinities, Egypt: a new assessment and geotourism perspectives

  • Emad S. Sallam
  • Mohamed A. Abd El-Samee
  • Olessia R. Bobrysheva
  • Natalia N. Yashalova
  • Dmitry A. RubanEmail author
S. I. SCJGE-1 2019
Part of the following topical collections:
  1. Current Advances in Geological Research of Egypt

Abstract

Geological heritage is an important resource for socio-economic development of Egypt, and, thus, it requires careful exploration. Potentially unique geological features available in Luxor city and its vicinities, including the Dababiya Protectorate, are reassessed on the basis of literature review and field work. This permits to establish six geological heritage types, namely, stratigraphical, palaeogeographical, sedimentary, palaeontological, geochemical, and geomorphological types. Localities representing these types are proposed as geosites, namely, the Dababiya Quarry with the Global Standard Stratotype Section and Point (GSSP) for the base-Eocene and horizons representing the Palaeocene–Eocene Thermal Maximum (PETM), Gebel Gurnah with the type section of the Thebes Formation, and the localities of the Hatshepsut and Luxor temples representing geological activity of the past civilization. Global rank is assigned to two of these geosites, namely, the Dababiya Quarry and the Hatshepsut Temple. Generally, the geological heritage of Luxor and its vicinities boasts significant geodiversity that is adequately displayed at the geosites. Involvement of the documented geological heritage into tourism activities is possible via integration of geotourism with some other kinds of tourism (cultural, archaeological, etc.) and strategic planning of urban geotourism.

Keywords

Archaeology Geosite Geotourism Palaeocene–Eocene Thermal Maximum Tourism potential Type section Urban areas 

Notes

Acknowledgements

The authors gratefully thank the journal editor and the anonymous reviewers for their helpful recommendations, as well as M.H. Henriques (Portugal) and W. Riegraf (Germany) for their help with literature.

References

  1. Abdallah T, Helal H (1990) Risk evaluation of rock mass sliding in El-Deir El-Bahary valley, Luxor, Egypt. Bull Int Assoc Eng Geol - Bulletin de l’Association Internationale de Géologie de l’Ingénieur 42:3–9CrossRefGoogle Scholar
  2. AbdelMaksoud KM, Al-Metwaly WM, Ruban DA, Yashalova NN (2018) Geological heritage under strong urbanization pressure: El-Mokattam and Abu Roash as examples from Cairo, Egypt. J Afr Earth Sci 141:86–93CrossRefGoogle Scholar
  3. Abou Elmagd K, Ali-Bik MW, Abayazeed SD (2014) Geology and geochemistry of Kurkur bentonites, southern Egypt: provenance, depositional environment, and compositional implication of Palaeocene-Eocene thermal maximum. Arab J Geosci 7:899–916CrossRefGoogle Scholar
  4. Ahmed AA, Fogg GE (2014) The impact of groundwater and agricultural expansion on the archaeological sites at Luxor, Egypt. J Afr Earth Sci 95:93–104CrossRefGoogle Scholar
  5. Alegret L, Ortiz S (2006) Global extinction event in benthic foraminifera across the Palaeocene/Eocene boundary at the Dababiya stratotype section. Micropaleontology 52:433–447CrossRefGoogle Scholar
  6. Alegret L, Ortiz S (2012) Uppermost Cretaceous to lowermost Eocene benthic foraminifera of the Dababiya corehole, Upper Nile Valley, Egypt. Stratigraphy 9:267–277Google Scholar
  7. Alegret L, Ortiz S, Arenillas I, Molina E (2005) Palaeoenvironmental turnover across the Palaeocene/Eocene boundary at the stratotype section in Dababiya (Egypt) based on benthic foraminifera. Terra Nova 17:526–536CrossRefGoogle Scholar
  8. Ali Ibrahim MAM (2011) The determinants of international tourism demand for Egypt: panel data evidence. Eur J Econ Finance Adm Sci 30:50–58Google Scholar
  9. Ansari MK, Moroni A, Ruban DA, Zorina SO, Aloia A, Ahmad M, Panikarskaja NI, Radchenko EG, Singh TN, Statsenko AA (2016) Geological activity of humans represented in the World Heritage Sites of India, Italy, and Russia: evidence of the Anthropocene. Geološki anali Balkanskoga Poluostrva 77:55–71CrossRefGoogle Scholar
  10. Arrad TY, Errami E, Ennih N (2018) From scientific inventory to socio-economic sustainable development: Tidzi Diapir geosite (Essaouira basin, Morocco). Journal of Chemical. Biol Physical Sci 9(1):1–17Google Scholar
  11. Aubry M-P, Salem R (2012a) The Dababiya quarry core: coccolith biostratigraphy. Stratigraphy 9:241–259Google Scholar
  12. Aubry M-P, Salem R (2012b) The Dababiya core: a window into Palaeocene to Early Eocene depositional history in Egypt based on coccolith stratigraphy. Stratigraphy 9:287–346Google Scholar
  13. Aubry M-P, Ouda K, Dupuis C, Berggren WA, Van Couvering JA, Ali J, Brinkhuis H, Gingerich PR, Heilmann-Clausen C, Hooker J, Kent DV, King C, Knox RWOB, Laga P, Molina E, Schmitz B, Steurbaut E, Ward DR (2007) The Global Standard Stratotype-Section and Point (GSSP) for the base of the Eocene Series in the Dababiya section (Egypt). Episodes 30:271–286CrossRefGoogle Scholar
  14. Awad GH, Ghobrial MG (1965) Zonal stratigraphy of the Kharga Oasis. Geol Surv Egypt Papers 34:1–77Google Scholar
  15. Berggren WA, Ouda K (2003) Upper Palaeocene-lower Eocene planktonic foraminiferal biostratigraphy of the Dababiya section, Upper Nile Valley (Egypt). Micropaleontology 49(suppl. 1):61–92CrossRefGoogle Scholar
  16. Berggren WA, Alegret L, Aubry M-P, Cramer BS, Dupuis C, Goolaerts S, Kent DV, King C, Knox RWO, Obaidalla N, Ortiz S, Ouda KAK, Abdel-Sabour A, Salem R, Senosy MM, Soliman MF, Soliman A (2012) The Dababiya corehole, upper Nile valley, Egypt: preliminary results. Aust J Earth Sci 105:161–168Google Scholar
  17. Bralower TJ, Meissner KJ, Alexander K, Thomas DJ (2014) The dynamics of global change at the Palaeocene-Eocene thermal maximum: a data-model comparison. Geochemistry, Geophysics, Geosystems 15:3830–3848CrossRefGoogle Scholar
  18. Brilha J (2016) Inventory and quantitative assessment of geosites and geodiversity sites: a review. Geoheritage 8:119–134CrossRefGoogle Scholar
  19. Brilha J, Grey M, Pereira DI, Pereira P (2018) Geodiversity: an integrative review as a contribution to the sustainable development of the whole of nature. Environ Sci Policy 86:19–28CrossRefGoogle Scholar
  20. Bruno DE, Crowley BE, Gutak JM, Moroni A, Nazarenko OV, Oheim KB, Ruban DA, Tiess G, Zorina SO (2014) Palaeogeography as geological heritage: developing geosite classification. Earth-Sci Rev 138:300–312CrossRefGoogle Scholar
  21. Cramer BS (2012) Data report: magnetic susceptibility measurements on Dababiya core. Stratigraphy 9:201–203Google Scholar
  22. Del Lama EA, de La Corte Bacci D, Martins L, da Gloria Motta Garcia M, Dehira LK (2015) Urban geotourism and the old centre of Sao Paulo City, Brazil. Geoheritage 7:147–164CrossRefGoogle Scholar
  23. Dowling R (2011) Geotourism’s global growth. Geoheritage 3:1–13CrossRefGoogle Scholar
  24. Dupuis C, Knox RWOB (2012) Lithostratigraphy of the upper Maastrichtian to lower Eocene succession in the Dababiya corehole, Egypt. Stratigraphy 9:205–212Google Scholar
  25. Dupuis C, Aubry M-P, Steurbaut E, Berggren WA, Ouda K, Magioncalda R, Cramer BS, Kent DV, Speijer RP, Heilmann-Clausen C (2003) The Dababiya Quarry section: lithostratigraphy, clay mineralogy, geochemistry and palaeontology. Micropaleontology 49(suppl. 1):41–59CrossRefGoogle Scholar
  26. El-Asmar HM, Ahmed MH, Taha MMN, Assal EM (2012) Human impacts on geological and cultural heritage in the coastal zone west of Alexandria to Al-Alamein, Egypt. Geoheritage 4:263–274CrossRefGoogle Scholar
  27. Errami E, Ennih N, Bendaoud A, Bouzidi O, Chabou MC, Andrianaivo L, Ben Ismail-Lattrache K, Hassine M 2013a. Inventaire du géopatrimoine en Afrique: état des lieux et perspectives. In Egoroff G., Cornée A., De Wever P. & Lalanne A. (eds.) - Actes du colloque “Géopatrimoine, un lustre d’inventaire en France”. 10–12 octobre 2012, Digne-les-Bains. Mém. H.S. Société. Géologique de France 13, 128–139.Google Scholar
  28. Errami E, Ennih E, Brocx M, Semeniuk V, Otmane K (2013b) Geoheritage, geoconservation and aspiring geoparks in Morocco: the Zenaga inlier. Società Geologica Italiana, Roma. 18:49–53 ISSN 2035–8008Google Scholar
  29. Errami E, Ennih N, Choukri A, Enniouar A & Lagnaoui A 2013c. The first geotrail in the Doukkala-Abda aspiring geopark (Morocco): a tool for local sustainable socio-economic development. Aloia A., Calcaterra D., Cuomo A., De Vita A., Guida D. (eds) (2013): Proceedings of the 12th European Geoparks Conference. National Park of Cilento, Vallo di Diano e Alburni – Geopark- Italy, 332 p. ISBN 978–88–907,281-0-5. 51–54.Google Scholar
  30. Errami E., Brocx M., Semeniuk V. (Eds) (2015a) From geoheritage to geoparks: case studies from Africa and Beyond. Springer Verlag, 269p. ISBN 978–3–319-10,707-3.Google Scholar
  31. Errami, E., Schneider, G., Ennih, N., Randrianaly, H.N., Bendaoud, A., Noubhani, A., Norman N., Allan M., Vasconcelos L., Costa L., Al-Wosabi M., Al-Subbary A., Mabvuto-Ngwira P., Okunlola G., Lawal Halliru S., Andrianaivo L., Siby S., Ketchemen B., Gauly M., Hassine M., Azki F., Tea J., Lattrache K., Omulo M., Bobrowsky, P. 2015b. Geoheritage and geoparks in Africa and the Middle-East: challenges and perspectives. In Geoheritage to Geoparks: Case Studies from Africa and Beyond. Errami Ezzoura, Brocx Margarette, & Semeniuk Vic (eds). 3–23. Springer Verlag. ISBN 978–3–319-10,707-3.Google Scholar
  32. Errami E, Brocx M, Semeniuk V, Ennih N 2015c. Geosites, sites of special scientific interest, and potential geoparks in the Anti-Atlas (Morocco). Geoheritage to Geoparks: Case Studies from Africa and Beyond. Springer Verlag. ISBN 978–3–319-10,707-3.Google Scholar
  33. Enniouar A, Errami E, Lagnaoui L, Boualla O. 2015. Geoheritage of Doukkala-Abda region (Morocco): a tool for local socio-economical sustainable development. In Geoheritage to Geoparks: Case Studies from Africa and Beyond. Springer Verlag. ISBN 978–3–319-10,707-3.Google Scholar
  34. Ernst SR, Guasti E, Dupuis C, Speijer RP (2006) Environmental perturbation in the southern Tethys across the Palaeocene/Eocene boundary (Dababiya, Egypt): Foraminiferal and clay mineral records. Mar Micropaleontol 60:89–111CrossRefGoogle Scholar
  35. Faris M (1991) Remarks on the late Palaeocene-early Eocene calcareous nannofossils from Gebel Gurnah section, Luxor, Nile Valley, Egypt. Delta J Sci 15:182–211Google Scholar
  36. Faris M, Ghandour IM, Zahran E, Mosa G (2015) Calcareous nannoplankton changes during the Palaeocene-Eocene thermal maximum in West Central Sinai, Egypt. Turk J Earth Sci 24:475–493CrossRefGoogle Scholar
  37. Fitzner B, Heinrichs K, La Bouchardiere D (2003) Weathering damage on Pharaonic sandstone monuments in Luxor-Egypt. Build Environ 38:1089–1103CrossRefGoogle Scholar
  38. Gabriel R, Moreira H, Alencoão A, Faria A, Silva E, Sá A (2018) An emerging paradigm for the UNESCO global geoparks: the ecosystem’s health provision. Geosciences 8:100CrossRefGoogle Scholar
  39. Galal G (2008) Foraminiferal criteria for the Dababiya quarry beds, the Palaeocene/Eocene global stratotype sections and point. Revue de Paleobiologie 27:475–510Google Scholar
  40. Geological Survey of Egypt, 1981. Geological map of Egypt, Scale 1: 2.000.000, Cairo.Google Scholar
  41. Gindy AR, Al-Shakiry AJ, Sa’ad NA (1985) Spheroidal weathering in marls and chalks of Gebel Gurnah near Luxor, southern Egypt. J Sediment Petrol 55:762–768Google Scholar
  42. Gontareva EF, Ansari MK, Ruban DA, Ahmad M, Singh TN (2015) Geological dimension of the cultural heritage: a case example of the Ajanta caves (Maharashtra, India). Cadernos do Laboratorio Xeolóxico de Laxe 38:67–78Google Scholar
  43. Goolaerts S, Dupuis C (2012) Ammonites from the Dababiya Quarry corehole: taxonomic notes and age assessment. Stratigraphy 9:261–266Google Scholar
  44. Gordon JE (2018) Geoheritage, geotourism and the cultural landscape: enhancing the visitor experience and promoting geoconservation. Geosciences (Switzerland) 8:136Google Scholar
  45. Gradstein FM, Ogg JG, Schmitz M, Ogg G (eds) (2012) The geologic time scale 2012. Vols. 1–2. Elsevier, Oxford, p 1176Google Scholar
  46. Grey M (2013) Geodiversity. valuing and conserving abiotic nature. Wiley-Blackwell, Chichester, p 495Google Scholar
  47. Guiraud R, Bosworth W, Thierry J, Delplanque A (2005) Phanerozoic geological evolution of the Northern and Central Africa: an overview. J Afr Earth Sci 43:83–143CrossRefGoogle Scholar
  48. Habibi T, Ponedelnik AA, Yashalova NN, Ruban DA (2018) Urban geoheritage complexity: evidence of a unique natural resource from Shiraz city in Iran. Resources Policy 59:85–94CrossRefGoogle Scholar
  49. Hamam KAW, (1972). Planktonic and larger foraminifera from the Upper Palaeocene and Lower Eocene of Gebel Gurnah, Luxor, Egypt. The University of Wales, Aberystwyth (unpubl. Ph.D. thesis).Google Scholar
  50. Haq BU, Al-Qahtani AM (2005) Phanerozoic cycles of sea-level change on the Arabian platform. GeoArabia 10:127–160Google Scholar
  51. Henriques MH, Brilha J (2017) UNESCO Global Geoparks: a strategy toward global understanding and sustainability. Episodes 40:349–355CrossRefGoogle Scholar
  52. Henriques MH, Pena dos Reis R, Brilha J, Mota T (2011) Geoconservation as an emerging geoscience. Geoheritage 3:117–128CrossRefGoogle Scholar
  53. Hose TA (2012) 3G’s for modern geotourism. Geoheritage 4:7–24CrossRefGoogle Scholar
  54. Kamel S, El Sherif A, 2001. The role of small and medium-sized enterprises in developing Egypt’s tourism industry using e-commerce. PICMET, 60–68.Google Scholar
  55. Keller G, Mateo P, Punekar J, Khozyem H, Gertsch B, Spangenberg J, Bitchong AM, Adatte T (2018) Environmental changes during the Cretaceous-Paleogene mass extinction and Palaeocene-Eocene thermal maximum: implications for the Anthropocene. Gondwana Research 56:69–89CrossRefGoogle Scholar
  56. Kent DV, Dupuis C (2003) Paleomagnetic study of the Palaeocene-Eocene Tarawan Chalk and Esna Shale: dual polarity remagnetizations of Cenozoic sediments in the Nile Valley (Egypt). Micropaleontology 49(suppl. 1):139–146CrossRefGoogle Scholar
  57. Khozyem H, Adatte T, Keller G, Tantawy AA, Spangenberg JE (2014a) The Palaeocene-Eocene GSSP at Dababiya, Egypt – Revisited. Episodes 37:78–86CrossRefGoogle Scholar
  58. Khozyem H, Adatte T, Spangenberg JE, Tantawy AA, Keller G (2014b) Toward a better understanding of Palaeocene-Eocene thermal maximum: a multidisciplinary record from Dababiya GSSP, Luxor, Egypt. Rendiconti Online Societa Geologica Italiana 31:123–124CrossRefGoogle Scholar
  59. Khozyem H, Adatte T, Spangenberg JE, Keller G, Tantawy AA, Ulianov A (2015) New geochemical constraints on the Palaeocene-Eocene thermal maximum: Dababiya GSSP, Egypt. Palaeogeogr Palaeoclimatol Palaeoecol 429:117–135CrossRefGoogle Scholar
  60. King C (2012) Palaeocene depositional environments and depositional sequences in the Dababiya Quarry corehole (Egypt). Stratigraphy 9:347–362Google Scholar
  61. King C, Dupuis C, Aubry M-P, Berggren WA, Knox ROB, Galal WF, Baele J-M (2017) Anatomy of a mountain: the Thebes Limestone Formation (Lower Eocene) at Gebel Gurnah, Luxor, Nile Valley, Upper Egypt. J Afr Earth Sci 136:61–108CrossRefGoogle Scholar
  62. Kirtland Turner S, Hull PM, Kump LR, Ridgwell A (2017) A probabilistic assessment of the rapidity of PETM onset. Nat Commun 8:353CrossRefGoogle Scholar
  63. Kominz MA, Browning JV, Miller KG, Sugarman PJ, Mizintseva S, Scotese CR (2008) Late Cretaceous to Miocene sea-level estimates from the New Jersey and Delaware coastal plain boreholes: an error analysis. Basin Res 20:211–226CrossRefGoogle Scholar
  64. Migoń P (2009) Geomorphosites and the World Heritage List of UNESCO. In: Reynard E, Coratza P, Regolini-Bissing G (eds) Geomorphosites. F. Pfeil, München, pp 119–130Google Scholar
  65. Migoń P, Pijet-Migoń E (2017) Viewpoint geosites - values, conservation and management issues. Proc Geol Assoc 128:511–522CrossRefGoogle Scholar
  66. Miller KG, Kominz MA, Browning JV, Wright JD, Mountain GS, Katz ME, Sugarman PJ, Cramer BS, Christie-Blick N, Pekar SF (2005) The Phanerozoic record of global sea-level change. Science 310:1293–1298CrossRefGoogle Scholar
  67. Moroni A, Gnezdilova VV, Ruban DA (2015) Geological heritage in archaeological sites: case examples from Italy and Russia. Proc Geol Assoc 126:244–251CrossRefGoogle Scholar
  68. Nguyen TMP, Petrizzo MR, Speijer RP (2009) Experimental dissolution of a fossil foraminiferal assemblage (Palaeocene-Eocene thermal maximum, Dababiya, Egypt): implications for paleoenvironmental reconstructions. Mar Micropaleontol 73:241–258CrossRefGoogle Scholar
  69. Obaidalla N (2012) Planktonic foraminiferal biostratigraphy of the upper Cretaceous to mid-Palaeocene of the Dababiya Quarry corehole, Upper Nile Valley, Egypt. Stratigraphy 9:229–240Google Scholar
  70. Obaidalla NA, Abdel-Maksoud NA, Hosny AM, Mahfouz KH (2017) Nature of the Palaeocene/Eocene (P/E) boundary in Sinai, Egypt. J Afr Earth Sci 136:44–60CrossRefGoogle Scholar
  71. Ogg JG, Ogg GM, Gradstein FM (2016) A concise geologic time scale 2016. Elsevier, Amsterdam, p 234Google Scholar
  72. Ólafsdóttir R, Tverijonaite E (2018) Geotourism: a systematic literature review. Geosciences 8:234CrossRefGoogle Scholar
  73. Ouda K, Berggren WA, Sabour AA (2012) Planktonic foraminiferal biostratigraphy of the Palaeocene/Eocene boundary interval in the Dababiya Quarry corehole, Dababiya, Upper Nile Valley, Egypt. Stratigraphy 9:213–227Google Scholar
  74. Plyusnina EE, Sallam ES, Ruban DA (2016) Geological heritage of the Bahariya and Farafra oases, the central Western Desert, Egypt. J Afr Earth Sci 116:151–159CrossRefGoogle Scholar
  75. Prosser C, Murphy M, Larwood J (2006) Geological conservation: a guide to good practice. English Nature, Peterborough, p 145Google Scholar
  76. Reynard E, Brilha J (eds) (2018) Geoheritage: assessment, protection, and management. Elsevier, Amsterdam, p 482Google Scholar
  77. Reynard E, Pica A, Coratza P (2017) Urban geomorphological heritage. an overview. Quaestiones Geographicae 36:7–20CrossRefGoogle Scholar
  78. Richter T, Steiner C (2008) Politics, economics and tourism development in Egypt: insights into the sectoral transformations of a neo-patrimonial rentier state. Third World Q 29:939–959CrossRefGoogle Scholar
  79. Röhl U, Westerhold T, Bralower TJ, Zachos JC (2007) On the duration of the Palaeocene-Eocene thermal maximum (PETM). Geochem Geophys Geosyst 8:Q12002CrossRefGoogle Scholar
  80. Ross D, Saxena G, Correia F, Deutz P (2017) Archaeological tourism: a creative approach. Ann Tour Res 67:37–47CrossRefGoogle Scholar
  81. Ruban DA (2010) Quantification of geodiversity and its loss. Proc Geol Assoc 121:326–333CrossRefGoogle Scholar
  82. Ruban DA (2015) Geotourism – a geographical review of the literature. Tour Manag Perspect 15:1–15CrossRefGoogle Scholar
  83. Ruban DA (2017) Geodiversity as a precious national resource: a note on the role of geoparks. Resour Policy 53:103–108CrossRefGoogle Scholar
  84. Ruban DA, Molchanova TK, Yashalova NN (2019) Three rising tourism directions and climate change: Conceptualizing new opportunities. e-Rev Tour Res 16:352–370Google Scholar
  85. Said R (1960) Planktonic foraminifera from the Thebes formation, Luxor, Egypt. Micropaleontology 6:277–286CrossRefGoogle Scholar
  86. Said R (1962) The geology of Egypt. Elsevier, Amsterdam, p 377Google Scholar
  87. Sallam ES, Ruban DA (2017) Palaeogeographical type of the geological heritage of Egypt: a new evidence. J Afr Earth Sci 129:739–750CrossRefGoogle Scholar
  88. Sallam ES, Ruban DA (2019) Ancient tufa and semi-detached megaclasts from Egypt: evidence for sedimentary rock classification development. Int J Earth Sci 108:1615–1616CrossRefGoogle Scholar
  89. Sallam ES, Abd El-Aal AK, Fedorov YA, Bobrysheva OR, Ruban DA (2018a) Geological heritage as a new kind of natural resource in the Siwa Oasis, Egypt: the first assessment, comparison to the Russian South, and sustainable development issues. J Afr Earth Sci 144:151–160CrossRefGoogle Scholar
  90. Sallam ES, Fathy EE, Ruban DA, Ponedelnik AA, Yashalova NN (2018b) Geological heritage diversity in the Faiyum Oasis (Egypt): a comprehensive assessment. J Afr Earth Sci 140:212–224CrossRefGoogle Scholar
  91. Sallam ES, Ponedelnik AA, Tiess G, Yashalova NN, Ruban DA (2018c) The geological heritage of the Kurkur-Dungul area in southern Egypt. JAfr Earth Sci 137:103–115Google Scholar
  92. Schulte P, Scheibner C, Speijer RP (2011) Fluvial discharge and sea-level changes controlling black shale deposition during the Palaeocene-Eocene thermal maximum in the Dababiya Quarry section, Egypt. Chem Geol 285:167–183CrossRefGoogle Scholar
  93. Senosy MM, Abdel-Sabour A (2012a) The Dababiya Quarry corehole in Dababiya Natural Park, southern Nile Valley, Egypt. Stratigraphy 9:189–192Google Scholar
  94. Senosy MM, Abdel-Sabour A (2012b) Geophysical logging and magnetic susceptibility studies on the Dababiya Quarry corehole, Dababiya Natural Park, southern Nile Valley, Egypt. Stratigraphy 9:193–199Google Scholar
  95. Sobaih AEE (2018) Human resource management in hospitality firms in Egypt: does size matter? Tour Hosp Res 18:38–48CrossRefGoogle Scholar
  96. Soliman MF, Ahmed EA, Kurzweil H (2006) Geochemistry and mineralogy of the Palaeocene/Eocene boundary at Gabal Dababiya (GSSP) and Gabal Owaina sections, Nile Valley, Egypt. Stratigraphy 3:31–52Google Scholar
  97. Soliman MF, Aubry M-P, Schmitz B, Sherrell RM (2011) Enhanced coastal paleoproductivity and nutrient supply in Upper Egypt during the Palaeocene/Eocene thermal maximum (PETM): mineralogical and geochemical evidence. Palaeogeogr Palaeoclimatol Palaeoecol 310:365–377CrossRefGoogle Scholar
  98. Stassen P, Steurbaut E, Morsi A-MM, Schulte P, Speijer RP (2012) Biotic impact of Eocene thermal maximum 2 in a shelf setting (Dababiya, Egypt). Aust J Earth Sci 105:154–160Google Scholar
  99. Steiner C (2006) Tourism, poverty reduction and the political economy: Egyptian perspectives on tourism’s economic benefits in a semi-rentier State. Tour Hosp Plan Dev 3:161–177CrossRefGoogle Scholar
  100. Štrba L, Rybár P, Baláž B, Molokác M, Hvizdák L, Kršák B, Lukác M, Muchová L, Tometzová D, Ferencíková J (2015) Geosite assessments: comparison of methods and results. Curr Issues Tour 18:496–510CrossRefGoogle Scholar
  101. Štrba L, Kršák B, Sidor C (2018) Some comments to geosite assessment, visitors, and geotourism sustainability. Sustainability 10:2589CrossRefGoogle Scholar
  102. Wimbledon WA, Benton MJ, Bevins RE, Black GP, Bridgland DR, Cleal CJ, Cooper RG, May VJ (1995) The development of a methodology for the selection of British geological sites for conservation: part 1. Mod Geol 20:159–202Google Scholar
  103. Youm C-I, Errami E, Sow E-H (2018) Neoproterozoïc Dindéfélo waterfall geosite (RNCD, Bassari country, Eastern Senegal): biodiversity and geodiversity between conservation and valorization. J Chem Biol Physical Sci 8:3Google Scholar
  104. Youssef M (2015) Calcareous nannofossils and paleoenvironments of the Palaeocene-Eocene thermal maximum (PETM) interval in central Egypt. J Afr Earth Sci 114:203–219CrossRefGoogle Scholar
  105. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2020

Authors and Affiliations

  • Emad S. Sallam
    • 1
  • Mohamed A. Abd El-Samee
    • 2
  • Olessia R. Bobrysheva
    • 3
  • Natalia N. Yashalova
    • 4
  • Dmitry A. Ruban
    • 3
    • 5
    Email author
  1. 1.Department of Geology, Faculty of ScienceBenha UniversityBenhaEgypt
  2. 2.Egyptian Environmental Affairs AgencyCairoEgypt
  3. 3.Southern Federal UniversityRostov-on-DonRussia
  4. 4.Cherepovets State UniversityVologda RegionRussia
  5. 5.K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University)MoscowRussia

Personalised recommendations