Advertisement

Landslide susceptibility mapping by fuzzy gamma operator and GIS, a case study of a section of the national road n°11 linking Mateur to Béja (Nortshern Tunisia)

  • Adel KlaiEmail author
  • Romdhane Haddad
  • Mohamed Khaled Bouzid
  • Mohamed Chedly Rabia
Original Paper

Abstract

The purpose of this paper is to map the landslide susceptibility using the fuzzy gamma operator and GIS for the section of the national road n°11 linking Mateur to Béja. To minimize the subjectivity of the fuzzy logic approach, the frequency ratio was used to calculate the fuzzy membership. To locate the 147 landslides, Google Earth extracts analysis, and field survey has been done. In this cartography, nine factors controlling landslides were used: slope, aspect, curvature plane, curvature profile, distance to faults, distance to rivers, land use, rainfall, and lithology. Once the fuzziness is calculated in each factor using the frequency ratio (FR), the fuzzy gamma operator can be applied to these nine factors to produce the landslide susceptibility map. Finally, the choice of the nearest susceptibility map of reality is made by applying the ROC curve. By the analysis of the area under curve (AUC), it is seen that the prediction accuracy of model proves that the gamma value of 0.90 yielded the better prediction of landslide susceptibility map (0.89). Finally, our area of interest was classified based on the Jenks natural breaks classification method into five classes, such as non-susceptible zone, low susceptible zone, moderate susceptible zone, high susceptible zone, and very high susceptible zone. Landslide susceptibility mapping based on the fuzzy gamma operator presents a very acceptable result with a reliability of 89%.

Keywords

Fuzzy gamma operator GIS Landslides  ROC 

Abbreviations

AUC

Area under curve

ROC

Receiver operating curves

GIS

Geographic information system

MCDA

Multiple criteria decision analysis

FR

Frequency ratio

References

  1. Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda–Yahiko Mountains, Central Japan. Geomorphology 65(1/2):15–31CrossRefGoogle Scholar
  2. Ayalew L, Yamagishi H, Ugawa N (2004) Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides 1(1):73–81.  https://doi.org/10.1007/s10346-003-0006-9 CrossRefGoogle Scholar
  3. Bnovallot J (1984a) Glissement de terrain et aménagement du milieu naturel dans une montagne méditerranéenne humide. Le cas des Atatfas, Kroumirie, Tunisie septentrionale. Le developpement rural en question, Ed ORSTOM:29-54Google Scholar
  4. Bonvallot J (1984b) Population, occupation du sol et mouvements de masses dans la région d’Ain Draham (Tunisie septentrionale). Communication du colloque Mouvements de terrains, Caen, série documents du BRGM 83:609–618Google Scholar
  5. Bonham C, Cox S (1995) Econ Geol 90:1352Google Scholar
  6. Bonham-Carter GF (1994) Geographic information systems for geoscientists: modeling with GIS. New York. Pergamon/Elsevier, Ottawa, p 398Google Scholar
  7. Bui DT, Lofman O, Revhaug I, Dick O (2011) Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Nat Hazards 59(3):1413–1444CrossRefGoogle Scholar
  8. Carrara AM, Cardinali R, Detti F, Guzzetti VP, Reichenbach P (1991) GIS techniques and statistical models in evaluating landslide hazard. Earth Surf Process Landf 16:427–445CrossRefGoogle Scholar
  9. Champati Ray PK, Dimri S, Lakhera RC, Sati S (2007) Fuzzy-based method for landslide hazard assessment in active seismic zone of Himalaya. Landslides 4:101–111CrossRefGoogle Scholar
  10. Chen Z, Wang J (2007) Landslide hazard mapping using logistic regression model in Mackenzie Valley, Canada. Natural Hazards 42(1):75–89.  https://doi.org/10.1007/s11069-006-9061-6 CrossRefGoogle Scholar
  11. Chung CJF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30(3):451–472CrossRefGoogle Scholar
  12. Dahal RK, Hasegawa S, Yamanaka M, Dhakal S, Bhandary NP, Yatabe R (2009) Comparative analysis of contributing parameters for rainfall-triggered landslides in the lesser Himalaya of Nepal. Environ Geol 58(3):567–586CrossRefGoogle Scholar
  13. Das I, Sahoo S, van Westen C, Stein A, Hack R (2010) Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas (India). Geomorphology 114:627–637CrossRefGoogle Scholar
  14. DeGraff J, Romesburg H (1980) Regional landslide susceptibility assessment for wildland management: a matrix approach. In: Coates D, Vitek J (eds) Thresholds : Geomorphology George Allen and Unwin, London, pp 401–414Google Scholar
  15. Demoulin A, Chung CF (2007) Mapping landslide susceptibility from small datasets: a case study in the Pays de Herve (E Belgium). Geomorphology 89:391–404CrossRefGoogle Scholar
  16. EL Aroui O (2016) Géomorphologie des mouvements de terrain en Kroumirie septentrionale (Tunisie). Edition Faculté des Lettres, des Arts et des Humanités de la Manouba (Tunisie) 356 p.Google Scholar
  17. El Aroui O (2017) Etude et cartographie des mouvements de terrain sur les versants du synclinal perché de Dyr El Kef (Tunisie du nord-ouest). Revue Tunisienne de Géographie 46-74:87–109Google Scholar
  18. Ercanoglu M, Gokceoglu C (2002) Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach. Environ Geol 41:720–730CrossRefGoogle Scholar
  19. Ercanoglu M, Gokceoglu C (2004) Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea region, Turkey). Eng Geol 75(3–4):229–250CrossRefGoogle Scholar
  20. Feizizadeh B, Blaschke T (2012a) Uncertainty and decision strategy analysis of GIS-based ordered weighted averaging method for landslide susceptibility mapping in Urmia lake basin, Iran. Proceedings of the International Conference of GI Science, ColumbusGoogle Scholar
  21. Feizizadeh B, Blaschke T (2012b) Land suitability analysis for Tabriz County, Iran: a multi-criteria evaluation approach using GIS. J Environ Plan Manag 56:1–23CrossRefGoogle Scholar
  22. Feizizadeh B, Blaschke T, Nazmfar H (2012) GIS-based ordered weighted averaging and Dempster-Shafer methods for landslide susceptibility mapping in Urmia lake basin, Iran. Int J Digit Earth 7:688–708CrossRefGoogle Scholar
  23. Gupta RP, Kanungo DP, Arora MK, Sarkar S (2008) Approaches for comparative evaluation of raster GIS-based landslide susceptibility zonation maps. Int J App Earth Obs Geoinform 10:330–341CrossRefGoogle Scholar
  24. Ilanloo M (2011) A comparative study of fuzzy logic approach for landslide susceptibility mapping using GIS: An experience of Karaj dam basin in Iran. Procedia - Social and Behavioral Sciences 19:668–676CrossRefGoogle Scholar
  25. Intarawichian N, Dasananda S (2010) Analytical hierarchy process for landslide susceptibility mapping in lower Mae Chem watershed, northern Thailand Suranaree. J Sci Technol 17(3):277–292Google Scholar
  26. Jordan C, O’Connor E, Marchant A, Northmore A, Greenbaum D, McDonald A, Kovacik M, Ahmed R (2000) Rapid landslide susceptibility mapping using remote sensing and GIS modelling. Proc: In 14th International Conference on Applied Geologic Remote Sensing, Las Vegas: 113–120Google Scholar
  27. Kanungo DP, Arora MK, Sarkar S, Gupta RP (2006) A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Eng Geol 85:347–366CrossRefGoogle Scholar
  28. Kanungo DP, Arora MK, Sarkar S, Gupta RP (2009) A fuzzy set based approach for integration of thematic maps for landslide susceptibility zonation. Georisk 3(1):30–43Google Scholar
  29. Kayastha P, Dhital MR, De Smedt F (2013) Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: a case study from the Tinau watershed, West Nepal. Comput Geosci 52:398–408CrossRefGoogle Scholar
  30. Krejci O, Baron I, Bil M, Hubatka F, Jurova Z, Kirchner K (2002) Slope movements in the Flysch Carpathians of Eastern Czech Republic triggered by extreme rainfalls in 1997: a case study. Phys Chem Earth 27:1567–1576CrossRefGoogle Scholar
  31. Kritikos T, Davies TRH (2011) GIS-based multi-criteria decision analysis for landslide susceptibility mapping at northern Evia, Greece. Z dt Ges Geowiss 162:421–434Google Scholar
  32. Lee S, Talib JA (2005) Probabilistic landslide susceptibility and factor effect analysis. Environ Geol 47:982–990CrossRefGoogle Scholar
  33. Lovine G (2008) Mud-flow and lava-flow susceptibility and hazard mapping through numerical modelling, GIS techniques, historical and geo-environmental analyses. In Proceedings of the iEMSs 4th biennial meeting, international congress on environmental modelling ANS software: integrating sciences and information technology for environmental assessment and decision making vol 3 :1447–1460Google Scholar
  34. Marston R, Miller M, Devkota L (1998) Geoecology and mass movements in the Manaslu Ganesh and Langtang-Jural Himals, Nepal. Geomorphology 26:139–150CrossRefGoogle Scholar
  35. Marthelot P (1957) L'érosion dans la montagne Kroumir. Revue de géographie alpine 45(2):273–287CrossRefGoogle Scholar
  36. Marthelot P, (1959) Note sur un décollement de versant dans la vallée des Atatfa (Kroumirie). Actes du 84" congr. Nat. Suc . Sav., Dijon 1959. Section de Geographic : 61–65.Google Scholar
  37. Nagarajan R, Mukherjee A, Roy A, Khire MV (1998) Temporal remote sensing data and GIS application in landslide hazard zonation of part of Western Ghat, India. Int J Rem Sens 19(4):573–585CrossRefGoogle Scholar
  38. Nefeslioglu HA, Duman TY, Durmaz S (2008) Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey). Geomorphology 94:401–418CrossRefGoogle Scholar
  39. Parise M (2001) Landslide hazard zonation of slopes susceptible to rock falls and topples. Nat Hazards Earth Syst Sci 2:37–49CrossRefGoogle Scholar
  40. Pourghasemi HR, Moradi HR, Fatemi A, Said M, Mahdavifar MR, Mohammdi R (2009) Landslide hazard assessment using fuzzy multi criteria decision-making method. Iran J Watershed Manag Sci Eng 3(8):51–62Google Scholar
  41. Pradhan B (2010) Application of an advanced fuzzy logic model for landslide susceptibility analysis. Int J Comput Intel Sys 3(3):370–381CrossRefGoogle Scholar
  42. Pradhan B, Lee S, Buchroithner M (2010) Remote sensing and GIS-based landslide susceptibility analysis and its cross-validation in three test areas using a frequency ratio model. Photogram Fernerkundung GeoInf 1:17–32CrossRefGoogle Scholar
  43. Saha AK, Gupta RP, Arora MK (2002) GIS-based landslide hazard zonation in a part of the Himalayas. Int J Rem Sens 23(2):357–369CrossRefGoogle Scholar
  44. Soeters R, van Westen CJ (1996) Slope instability recognition analysis and zonation. In: Turner KT, Schuster RL (eds) Landslides. Investigation and mitigation, special report no. 247. Transportation Research Board National Research Council, Washington DC, pp 129–177Google Scholar
  45. Van Westen CJ (1993) Application of geographic information systems to landslide hazard zonation. ITC publication no 15, International Institute for Aerospace and Earth Resources Survey, Enschede, The Netherlands, 245.Google Scholar
  46. Williams CJ, Lee SS, Fisher RA, Dickerman LH (1999) A comparison of statistical methods for prenatal screening for Down syndrome. Appl Stoch Model Data Anal 15:89–101CrossRefGoogle Scholar
  47. Wu Y, Li W, Wang Q, Liu Q, Yang D, Xing m, Pei Y, Yan S (2016) Landslide susceptibility assessment using frequency ratio, statistical index and certainty factor models for the Gangu County, China. Arabian Journal of Geosciences 9(2)Google Scholar
  48. Yalcin A, Reis S, Aydinoglu AC, Yomralioglu T (2011) A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. CATENA 85(3):274–287CrossRefGoogle Scholar
  49. Zadeh LA (1965) Inf Control Thesis. 8:38Google Scholar

Copyright information

© Saudi Society for Geosciences 2019

Authors and Affiliations

  1. 1.Department of Earth Science, Faculty of sciences of BizerteUniversity of CarthageBizerteTunisia
  2. 2.Department of Geography, Faculty of Letters, Arts and HumanitiesUniversity of ManoubaManoubaTunisia

Personalised recommendations