Advertisement

Mineral deposits of northeastern Algeria (southern Medjerda mounts and diapiric zone): regional-scale structural controls, spatial distribution, and importance of geophysical lineaments

  • Saadia Ysbaa
  • Omar HaddoucheEmail author
  • Abdelhak Boutaleb
  • Madjid Chemam
  • Moussa Sadaoui
Original Paper
  • 39 Downloads

Abstract

The Southern of Medjerda mounts and the diapiric zone in the northeast of Algeria host a significant hydrothermal Pb-Zn-Fe-Ba (±Cu, ±F, ±Sr, ±Au, ±Ag) ore deposits and showings. The integration of geophysical data (ground gravity and aeromagnetic datasets) was undertaken in order to clarify and define the litho-structural control of the mineralization. These geophysical surveys allowed the identification of several prominent geophysical features. Some of these features correspond to lithological contacts; others reflect tectonic trough zones, Triassic salt diapirs, sedimentary basins, anticlines, and faults. The preferential (primary) trend of structural features within the study area is NE–SW and NW–SE. Integrated interpretation of geological and regional geophysical data helped the identification of the main factors controlling the distribution of mineral deposits within the study area. Most of the mineral deposits are likely to be found along or near major NE–SW/NW–SE deep lineaments. These major deeper lineaments have probably controlled the kinematic evolution of geological structures, sedimentary basins, and the ascension of the Triassic rocks during the lower Cretaceous. They seem to play a significant role providing favorable pathways for the migration and ascent of mineralized fluids to depositional sites along smaller faults into the sedimentary cover or at contact between Triassic salt outcrops and lower Cretaceous carbonate rocks.

Keywords

Geology Metallogeny Gravimetric Aeromagnetic Ore deposit Tectonic 

References

  1. Addoum B (1995) L’Atlas saharien Sud-oriental: Cinématique des plis chevauchements et reconstitution du bassin du Sud-Est constantinois (Confins algéro-tunisiens). Thèse. Doct ès Sc. Univ. Paris XI, Centre d’Orsay, 200 pGoogle Scholar
  2. Airo ML, Mertanen S (2008) Magnetic signatures related to orogenic gold mineralization, Central Lapland Greenstone Belt, Finland. J Appl Geophys 64:14–24CrossRefGoogle Scholar
  3. Aissaoui D (1984) Les structures liées à l’accident sud-atlasique entre Biskra et le Djebel Manndra, Algérie. Evolution géométrique et cinématique. Thèse de 3 ème cycle, Univ. Louis Pasteur, StrasbourgGoogle Scholar
  4. Allingham J.W (1966) Aeromagnetic anomalies in the Bonne Terre area of the southeast Missouri Mining District: Mining Geophysics, v. 1. Soc Explor Geophys 36–53Google Scholar
  5. Anand SP, Rajaram M (2003) Study of aeromagnetic data over part of Eastern Ghat mobile belt and Bastar craton. Gondwana Res Mem 6:859–865CrossRefGoogle Scholar
  6. Anand SP, Rajaram M (2007) Aeromagnetic signatures of the cratons and mobile belts over India. Int Assoc Gondwana Res Mem 10:233–242Google Scholar
  7. Anderson GM, Macqueen RW (1982) Ore deposit models–6. Mississippi Valley-Type lead-zinc deposits. Geosci Can 9:107–117Google Scholar
  8. Andrews SJ (1998) Stratigraphy and depositional setting of the upper Mc-Namara Group, Lawn Hills region, northwest Queensland. Econ Geol 93:1132–1152CrossRefGoogle Scholar
  9. Aoudjehane M, Bouzenoun A, Rouvier H, Thibieroz J (1992) Halocine`se et dispositifs d’extrusions de Trias dans l’Atlas saharien oriental (NE Alge´rien). Ge´ol Me´diterr XIX (4)273–287CrossRefGoogle Scholar
  10. Austin JR, Blenkinsop TG (2008) The Cloncurry Lineament: geophysical and geological evidence for a deep crustal structure in the Eastern Succession of the Mount Isa Inlier. Precambrian Res 163(1-2):50–68CrossRefGoogle Scholar
  11. Austin JR, Blenkinsop TG (2009) Local to regional scale structural controls on mineralisation and the importance of a major lineament in the eastern Mount Isa Inlier, Australia: review and analysis with autocorrelation and weights of evidence. Ore Geol Rev 35:298–316CrossRefGoogle Scholar
  12. Betts PG, Lister GS (2002) Developing a geodynamically indicated targeting strategy forshale hosted massive sulphide Pb-Zn-Ag mineralisation in the Western foldbelt of the Mount Isa terrane. Aust J Earth Sci 49:985–1010CrossRefGoogle Scholar
  13. Betts PG, Giles D, Lister GS (2003) Tectonic Environment of shale-hosted massive sulfide Pb-Zn-Ag deposits of Proterozoic Northeastern Australia. Econ Geol 98:557–576CrossRefGoogle Scholar
  14. Boadi B, Wemegah DD, Preko K (2013) Geological and structural interpretation of the Konongo area of the Ashanti gold belt of Ghana from aero-magnetic and total count radiometric (CT) data. Int Res J Geol Min (IRJGM) (2276-6618) 3(3)124–135Google Scholar
  15. Bouhlel S (1993) Géologie, minéralogie et essai de modélisation des minéralisations F-Ba-Sr-Pb-Zn (S°): Un pub, thesis. Doctorat d’Etat. Univ. Tunis II, 293Google Scholar
  16. Boutaleb A (2001) Les minéralisations Pb-Zn du domaine Sétifien-Hodna: Gîtologie, pétrographie des dolomies, microthermométrie et implications métallogénique. Thèse. Doct. D’Etat, USTHB (FSTGAT), Alger. AlgérieGoogle Scholar
  17. Boutaleb A, Aïssa DE, Touahri B (1999) Les gîtes plombo-zincifères du Hodna : Minéralisations comparables au type « Vallée du Mississippi ». Bull. Serv., Géol., Algérie. Vol. 10, n°1, pp55 – 71, 6 fig., 2 tabGoogle Scholar
  18. Bouzenoune A (1993) Minéralisations péridiapiriques de l’Aptien calcaire : les carbonates de fer du gisement hématitique de l’Ouenza (Algérie orientale). Thèse Doct Univ Paris VI, FranceGoogle Scholar
  19. Bradley DC, Leach DL (2003) Tectonic controls of Mississippi Valley-Type lead-zinc mineralization in orogenic forelands. Mineral Deposita 38:652–667CrossRefGoogle Scholar
  20. Broadbent GC, Waltho AE (1998) Century zinc-lead-silver deposit, in Berkman DA, Mackenzie DH (eds) Geology of the mineral deposits of Australia and Papua New Guinea: Australasian Institute of Mining and Metallurgy Monograph, vol. 22. pp. 729–735Google Scholar
  21. Chernicoff JC, Richards JP, Zappettini EO (2002) Crustal lineament control on magmatism and mineralization innorthwestern Argentina: geological, geophysical, and remote sensing evidence. Ore Geol Rev 21:127–155CrossRefGoogle Scholar
  22. Cordell L (1979) Gravity and aeromagnetic anomalies over basement structure in the Rolla quadrangle and the southeast Missouri lead district. Econ Geol 74:1383–1394CrossRefGoogle Scholar
  23. Cordell L, Knepper DH (1987) Aeromagnetic images: fresh insight to the buried basement, Rolla quadrangle, southeast Missouri. Geophysics 52(2):218–213CrossRefGoogle Scholar
  24. Criss RE, Champion DE (1984) Magnetic properties of granitic rocks from the southern half of the Idaho batholith--influences of hydrothermal alteration and implications for aeromagnetic interpretation. J Geophys Res 89(B8):7061–7076CrossRefGoogle Scholar
  25. Curnelle R (1983) Evolution structuro-sedimentaire du Trias el de l'Infralias d'Aquitaine. Bull Centres Rech Explor Prod Elf-Aquitaine 7/1:69–79Google Scholar
  26. Durand Delga M, Fontobé JM (1980) Le cadre structural de la Méditerranée occidentale. 26ème Cong. Géol. Inter., Paris, Coll.5, Mém. BRGM, n° 115, p.67–85Google Scholar
  27. Frizon de Lamotte D, Saint Bezar B, Bracène R, Mercier E (2000) The two main steps of the Atlas building and geodynamics of the western Mediterranean. Tectonics 19:740–761.  https://doi.org/10.1029/2000TC900003 CrossRefGoogle Scholar
  28. Grant FS (1985a) Aeromagnetics, geology and ore environments, II. Magnetite and ore environments. Geoexploration 23(3):335–362.  https://doi.org/10.1016/0016-7142(85)90002-X CrossRefGoogle Scholar
  29. Grant FS (1985b) Aeromagnetics, geology and ore environments, I. Magnetite in igneous, sedimentary and metamorphic rocks: an overview. Geoexploration 23(3):303–333.  https://doi.org/10.1016/0016-7142(85)90001-8 CrossRefGoogle Scholar
  30. Haddouche O (2010) Les minéralisations à Ba, Pb-Zn, Cu, Hg liées au segment NE du Djebel Azreg-Djebel Khenchela (NE de l’Algérie) : géologie, gitologie et apport de l’étude des inclusions fluides. Thèse Doct FSTGAT (USTHB), 175pGoogle Scholar
  31. Haddouche O, Boutaleb A, Hebert, R, Picard D, Sami L (2004) Les minéralisations à Pb-Zn, Fe, Ba (Sr) d’El Ouasta (Algérie Nord Oriental) : Typologie et apport des études d’inclusions fluides. Bull. Serv. Géol. Algérie. Vol.15, n°2, pp. 87-105, 14 fig., 2 tablGoogle Scholar
  32. Haddouche O, Boutaleb A, Benhamoud I (2014) Contexte structural des minéralisations liées à la bordure nord des Monts des Aures (NE de l’Algérie) et des régions voisines: exemple des gisements à BA-Pb (Zn-Cu) d’Ichmoul et d’Ain Mimoun. Bull Serv Géol Algérie 25(1):3–19 10Google Scholar
  33. Haddouche O, Boutaleb A, Chamam M, Ysbaa S, Hammouche H, Boubaya D (2016) Pb-Zn (Ba) deposits of the oriental Saharan Atlas (north-east of Algeria): distribution, control and implications for mining exploration. Arab J.  https://doi.org/10.1007/s12517-016-2406-x
  34. Hanna W.F (1969) Negative aeromagnetic anomalies over mineralized areas of the Boulder batholith, Montana: U.S. Geological Survey Professional Paper 650-D, p. 159-167Google Scholar
  35. Hatira N (1988) Les concentrations de Zn, Pb, Sr, (Ba), dans le cortex des diapirs de Trias salifère; exemple du diapir de Sakièt-Koucha (Tunisie septentrionale). Comparaison avec d’autres massifs tunisiens et avec les cap-rocks de la Golf Coast (U.S.A). Thèse Doct UnivParis VI, 212pGoogle Scholar
  36. Herkat M (1999) La sédimentologie du haut niveau marin du Crétacé supérieur de l’Atlas saharien oriental et de l’Aurès : Stratigraphie séquentielle, analyse quantitative des biocénoses, évolution paléogéographique et contexte géodynamique. Thèse. Doct., FSTGAT (USTHB), Alger. AlgérieGoogle Scholar
  37. Hobbs B.E, Ord A, Archibald N.J, Walshe J.L, Zhang Y, Brown M and Zhao C (2000) Geodynamic modeling as an exploration tool: Australasian Institute of Mining and Metallurgy Publication Series, vol. 2/2000, pp. 34–49Google Scholar
  38. Hui L, Qingjun Z, Puyuan T, Wenguang H (2015) Technologies and applications of geophysical exploration in deep geothermal resources in China. Proceedings World Geothermal Congress 2015. Melbourne, Australia, 19-25Google Scholar
  39. Kurtz J (1983) Geochemistry of early Mesozoic basalts from Tunisia. J Afr Earth Sci 1:113–125Google Scholar
  40. Kyle JR, Price PE (1986) Metallic sulfide mineralization in sald-dome cap-roks, Gulf Coast. USA Trans Inst Min Metall Sect B 95:B6–B16Google Scholar
  41. Kyle JR, Saunders J (1996) Metallic deposits of the Golf Coast Bassin: Diverse mineralization styles in a young sedimentary bassin. Soc Econ Geol Spec Publ (Sangster Edition) USA 4(1996):218–229Google Scholar
  42. Lago San José M, Galé Bomao C, Arranz Yagüe E, Vaquer Navarro R, Gil Imaz A, Pocovi Juan YA (2000) Triassic tholeiitic dolerites (“ophites”) of the el grado diapir (pyrenees, huesca, spain): emplacement and composition. Estud Geol 56:3–18Google Scholar
  43. Laouar R, Salmi-Laouar S, Sami L, Adrian J, Kolli O, Boutaleb A, Fallick AE (2016) Fluid inclusion and stable isotope studies of the Mesloula Pb-Zn-Ba ore deposit, NE Algeria: Characteristics and origin of the mineralizing fluids. J Afr Earth Sci 121:119–135CrossRefGoogle Scholar
  44. Leach D.L. and Sangster D.F. (1993) Mississippi Valley Type lead-zinc deposits: Geological Association of Canada Special Paper 40, p. 289–314Google Scholar
  45. Leach DL, Bradley DC, Lewchuk MT, Symons DTA, de Marsily G, Brannon JC (2001) Mississippi Valley-Type lead-zinc deposits through geological time: implications from recent age-dating research. Mineral Deposita 36:711–740CrossRefGoogle Scholar
  46. Lucas C (1985) Le Grès rouge du versant nord des Pyrenees. These Univ Toulouse. 267 pGoogle Scholar
  47. Mohebi A, Mirnejad H, Lentz D, Behzadi M, Dolati A, Kani A, Taghizadeh H (2015) Controls on porphyry Cu mineralization around Hanza Mountain, south-east of Iran: An analysis of structural evolution from remote sensing, geophysical, geochemical and geological data. Ore Geol Rev 69:187–198CrossRefGoogle Scholar
  48. Mwenifumbo CM (1993) Borehole geophysics in environmental application. Can Inst Min Metall Bull 86(966):43–49Google Scholar
  49. Neudert M, McGeough M (1996), A new tectonostratigraphic frame-work for the deposition of the upper McArthur Group, NT, [abs]: James Cook University of North Queensland Economic Geology Research UnitExtended Abstracts, vol. 55, pp. 90–94Google Scholar
  50. O’Reilly BM, Readman PW, Murphy T (1999) Gravity lineaments and Carboniferous-hosted base metal deposits of the Irish Midlands. Geol Soc Lond, Spec Publ 155:313–321CrossRefGoogle Scholar
  51. Orgeval JJ, Giot D, Karoui J, Monthel J, Sahli R (1986) Le gisement de Zn-Pb de Bou Grine (Atlas tunisien). Description et historique de la découverte. Chron Rech Min 482:5–32Google Scholar
  52. Paradis S, Hannigan P, and Dewing K (2007) Mississippi Valley-Type lead-zinc deposits. In: Goodfellow WD (ed) Mineral deposits of Canada: A synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods: Geological Association of Canada, Mineral Deposits Division, Special Publication no. 5, p. 185–203Google Scholar
  53. Perthuisot V (1978) Dynamisme et pétrogenèse des extrusions triasiques en Tunisie septentrionale. Trav Labo Géol, ENS, Paris, n° 9, 312 pGoogle Scholar
  54. Perthuisot V (1992) Les diapirs du Maghreb central et oriental : des diapirs variés, résultats d’une évolution structurale et pétrogénétique complexe. Bull. Soc. Géol., France, t. 163, n°6, pp.751–760Google Scholar
  55. Perthuisot V, Rouvier H (1988) Les relations métal-soufre-eau-hydrocarbures-microorganismes et la genèse des concentrations de sulfures et de soufre des diapirs évaporitiques. In: Pélissonier H, Sureau JF (éds) Mobilité et concentration des métaux de base dans les couvertures sédimentaires : Manifestations, mécanismes, prospection. Doc. BRGM, n°183, pp. 269–278Google Scholar
  56. Posey HH, Kyle JR, Agee WN (1994) Relations between diapiric salt structures and metal concentrations, Golf Coast sedimentary basin, Southern North America. Soc Econ Geol Spec Publ (Sangster Edition) USA 4:239–263Google Scholar
  57. Reynolds RL, Rosenbaum JG, Hudson MR, Fishman NS (1990) Rock magnetism, the distribution of magnetic minerals in the Earth's crust, and aeromagnetic anomalies. In: Hanna WF (ed) Geologic Applications of Modern Aeromagnetic Surveys: U.S. Geological Survey Bulletin 1924, pp. 24–45Google Scholar
  58. Rouvier H, Perthuisot V, Mansouri A (1985) Pb-Zn deposits and salt bearing diapirs in southern Europe and North africa. Econ Geol 80:666–687CrossRefGoogle Scholar
  59. Sami L (2011) Caractérisation géochimique des minéralisations à Pb-Zn, F, Ba, Cu, Fe et Hg des confins Algéro-tunisiens. Thèse. Doct. d’Etat, (FSTGAT) USTHB, Alger. Algérie. 179pGoogle Scholar
  60. Sangster DF (1983) Mississippi Valley-Type deposits: a geological mélange. In: Kisvarsanyi, Geza, Grant SK, Pratt WP, Koenig JW (eds) Proceedings of international conference on Mississippi Valley-Type lead-zinc deposits: University of Missouri-Rolla Press, Rolla, Mo., pp. 7–19Google Scholar
  61. Sangster D.F. (1990) Mississippi Valley-Type and sedex leadzinc deposits: A comparative examination: transactions of the Institution of Mining and Metallurgy, sec. B, v. 99, p. B21–B42Google Scholar
  62. Sangster DF (1996) Carbonate-hosted lead-zinc deposits: Society of Economic Geologists Special Publication 4, 664 pGoogle Scholar
  63. Sheppard SMF, Charef A, Bouhlel S (1996) Diapirs and Pb-Zn mineralizations: a general model based on Tunisian (N. Africa) and Gulf Coast (U.S.A) deposits. Soc Geol Spec Publ 4:230–243Google Scholar
  64. Sverjensky DA (1986) Genesis of Mississippi Valley-Type lead-zinc deposits. Annu Rev Earth Planet Sci 14:177–199CrossRefGoogle Scholar
  65. Symons DTA, Kawasaki K, Pannalal SJ (2010) Paleomagnetic mapping of the regional fluid flow event that mineralized the Upper Mississippi Valley Zn-Pb ore district, Wisconsin, U.S.A. J Geochem Explor 106(1-3):188–196.  https://doi.org/10.1016/j.gexplo.2009.11.004 CrossRefGoogle Scholar
  66. Thibieroz J, Madre M (1976) Le gisement de siderite du Djebel El Ouenza (Algérie) est contrôlé par un golf de la mer aptienne. Bull Soc Hist Nat Afrique du Nord, Alger, t67, fasc. 3-4, pp. 126–150Google Scholar
  67. Van Blaricom R (1980) Practical geophysics: Northwest Mining Association, 303 pGoogle Scholar
  68. Vila JM (1980) La chaîne alpine d’Algérie nord-orientale et des confins algéro-tunisiens. Thèse. Doct. d’Etat, Univ. P. et M. Curie, Paris VI, 665pGoogle Scholar
  69. Wilkinson JJ, Everett CE, Boyce AJ, Gleeson SA, Rye DM (2005) Intracratonic crustal seawater circulation and the genesis of subseafloor zinc-lead mineralization in the Irish orefield. Geol Soc Am 33(10):805–808.  https://doi.org/10.1130/G21740 CrossRefGoogle Scholar
  70. Wright PM (1981) Gravity and magnetic methods in mineral exploration. In: Skinner BJ (ed) Economic Geology, 75th Anniversary volume, p. 829–839Google Scholar
  71. Zerdazi A (1990) Étude gravimétrique du môle d’Aïn M’Lila et de l’Atlas saharien Septentrional (Nord-Est de l’Algérie). Thèse. Doct. Es Sciences, Univ. Lausane, 227 pGoogle Scholar
  72. Zhou YR (1998) The application of thermal infrared remote sensing techniques in geothermal surveying. Remote Sens Land Resour 4:24–28Google Scholar

Copyright information

© Saudi Society for Geosciences 2019

Authors and Affiliations

  1. 1.Faculty of Hydrocarbon and Chemistry, Laboratory of Mineral Resources and EnergyUniversity M’hamed BougaraBoumerdesAlgeria
  2. 2.Metallogeny and Magmatism LaboratoryUniversity of Sciences and Technology Houari Boumediene (USTHB)AlgiersAlgeria
  3. 3.Abitibi Géophysique incVal-d’OrCanada

Personalised recommendations