Geochemical characteristics of the karst-type bauxites: an example from the Kanirash deposit, NW Iran

  • Ali AbediniEmail author
  • Masoud Habibi Mehr
  • Maryam Khosravi
  • Ali Asghar Calagari
Original Paper


The Kanirash bauxite deposit belongs to the Iran-Himalayan karst-type bauxite belt, which is situated about 30 km southeast of Mahabad city, northwestern Iran. The bauxite ores are embedded by the Late Permian carbonate rocks intercalated with shale of the Ruteh Formation and occurred as layer and lens-shaped patches. The bauxite ores contain diaspore, clinochlore, hematite, pyrophyllite, illite, rutile, and lesser amounts of zircon, pyrite, and barite. This mineral assemblage indicates that this deposit was formed in a transitional zone between the vadose and the phreatic environments. The presence of pyrite in the bauxite ores demonstrates that organic matters were present in the uppermost parts of the profile and the depositional diagenetic/epigenetic environment was reducing. Ti and Fe together with a suite of trace elements, including Ni, Cr, Co, Ga, Ta, and V, were leached from the upper parts of the weathered profile and concentrated in the bottom parts with respect to Hf, chosen as the least mobile element. Some factors, such as pH variations in weathering solutions, buffering nature of the carbonate bedrock, mineral control, the existence of organic materials, and fluctuations of groundwater table played important roles in distribution of trace and rare earth elements.


Kanirash bauxite deposit Mass change Fluctuations of groundwater level Iran 



Our gratitude is further expressed to Prof. Abdullah M. Al-Amri and associate editor for their advice, valuable suggestions, and editorial assistance, and also two anonymous reviewers for reviewing and making critical comments on this manuscript.

Funding information

This work was financially fully supported by the Bureau of Deputy of Research and Complementary Education of Urmia University.


  1. Abedini A, Calagari AA (2013a) Rare earth elements geochemistry of Sheikh-Marut laterite deposit, NW Mahabad, West-Azarbaidjan Province, Iran. Acta Geol Sin-Engl 87:176–185CrossRefGoogle Scholar
  2. Abedini A, Calagari AA (2013b) Geochemical characteristics of Kanigorgeh ferruginous bauxite horizon, West-Azarbaidjan Province. NW Iran Period Miner 82:1–23Google Scholar
  3. Abedini A, Calagari AA (2013c) Geochemical characteristics of bauxites: the Permian Shahindezh horizon, NW Iran. Neues Jahrb Geol Palaontol Abh 270:301–324CrossRefGoogle Scholar
  4. Abedini A, Calagari AA (2014) REE geochemical characteristics of titanium-rich bauxites: the Permian Kanigorgeh horizon, NW Iran. Turk J Earth Sci 23:513–532CrossRefGoogle Scholar
  5. Abedini A, Calagari AA (2015) Rare earth element geochemistry of the Upper Permian limestone: the Kanigorgeh mining district, NW Iran. Turk J Earth Sci 24:1–18CrossRefGoogle Scholar
  6. Abedini A, Calagari AA (2017) Geochemistry of claystones of the Ruteh Formation, NW Iran: implications for provenance, source-area weathering, and paleo-redox conditions. Neues Jahrb Miner Abh 194:107–123CrossRefGoogle Scholar
  7. Abedini A, Calagari AA, Rezaei Azizi M (2018) The tetrad-effect in rare earth elements distribution patterns of titanium-rich bauxites: evidence from the Kanigorgeh deposit, NW Iran. J Geochem Explor 186:129–142CrossRefGoogle Scholar
  8. Abedini A, Khosravi M, Calagari AA (2019a) Geochemical characteristics of the Arbanos karst-type bauxite deposit, NW Iran: implications for parental affinity and factors controlling the distribution of elements. J Geochem Explor 200:249–265CrossRefGoogle Scholar
  9. Abedini A, Rezaei Azizi M, Calagari AA (2019b) REE mobility and tetrad effects in bauxites: an example from the Kanisheeteh deposit, NW Iran. Acta Geodyn Geomater 193:11–26CrossRefGoogle Scholar
  10. Babechuk MG, Widdowson M, Kamber BS (2014) Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India. Chem Geol 363:56–75CrossRefGoogle Scholar
  11. Bárdossy G (1982) Karst bauxites. Bauxite deposits on carbonate rocks. Dev Econ Geol 14 pp. 441. Elsevier, Amsterdam Google Scholar
  12. Bárdossy G, Aleva GJJ (1990) Lateritic bauxites. Dev Econ Geol 27 pp. 624. Elsevier, AmsterdamGoogle Scholar
  13. Beyala VKK, Onana VL, Priso ENE, Parisot JC, Ekodeck GE (2009) Behaviour of REE and mass balance calculations in a lateritic profile over chlorite schists in South Cameroon. Chem Erde-Geochem 69:61–73CrossRefGoogle Scholar
  14. Boni M, Rollinson G, Mondillo N, Balassone G, Santoro L (2013) Quantitative mineralogical characterization of karst bauxite deposits in the Southern Apennines, Italy. Econ Geol 108:813–833CrossRefGoogle Scholar
  15. Boulange B, Colin F (1994) Rare earth element mobility during conversion of nepheline syenite into lateritic bauxite at Passa Quatro, Minais Gerais, Brazil. Appl Geochem 9:701–711CrossRefGoogle Scholar
  16. Boulange B, Muller JP, Sigolo JB (1990) Behaviour of the rare earth elements in a lateritic bauxite from syenite (Bresil). Chem Geol 84:350–351CrossRefGoogle Scholar
  17. Braun JJ, Pagel M (1994) Geochemical and mineralogical behavior of REE, Th and U in the Akongo lateritic profile (SW Cameroon). Catena 21:173–177CrossRefGoogle Scholar
  18. Braun JJ, Pagel M, Muller JP, Bilong P, Michard A, Guillet B (1990) Ce anomalies in lateritic profiles. Geochim Cosmochim Acta 54:781–795CrossRefGoogle Scholar
  19. Braun JJ, Viers J, Dupré B, Polve M, Ndam J, Muller JP (1998) Solid/liquid REE fractionation in the lateritic system of Goyoum, East Cameroon: the implication for the present dynamics of the soil covers of the humid tropical regions. Geochim Cosmochim Acta 62:273–299CrossRefGoogle Scholar
  20. Calagari AA, Abedini A (2007) Geochemical investigations on Permo-Triassic bauxite horizon at Kanisheeteh, east of Bukan, West-Azarbaidjan, Iran. J Geochem Explor 94:1–18CrossRefGoogle Scholar
  21. Chen YJ, Tang HS (2016) The great oxidation event and its records in North China Craton. In: Zhai MG, Zhao Y, Zhao TP (eds) Main tectonic events and metallogeny of the North China Craton, Springer, Singapore, pp 281–304 CrossRefGoogle Scholar
  22. Compton SJ, White AR, Smith M (2003) Rare earth element behavior in soils and salt pan sediments of a semi-arid granitic terrain in the Western Cape, South Africa. Chem Geol 201:239–255CrossRefGoogle Scholar
  23. Condie KC, Dengate J, Cullers RJ (1995) Behavior of rare earth elements in a paleoweathering profile on granodiorite in the Front Range, Colorado, USA. Geochim Cosmochim Acta 59:279–294CrossRefGoogle Scholar
  24. D’Argenio B, Mindszenty A (1995) Bauxites and related paleokarst: tectonic and climatic event markers at regional unconformities. Eclogae Geol Helv 88:453–499Google Scholar
  25. Deng XH, Chen YJ, Yao JM, Bagas L, Tang HS (2014) Fluorite REE-Y (REY) geochemistry of the ca. 850 Ma Tumen molybdenite-fluorite deposit, eastern Qinling, China: constraints on ore genesis. Ore Geol Rev 63:532–543CrossRefGoogle Scholar
  26. Duzgoren-Aydin NS, Aydin A, Malpas J (2002) Distribution of clay minerals along a weathered pyroclastic rock profile, Hong Kong. Catena 50:17–41CrossRefGoogle Scholar
  27. Esmaeily D, Rahimpour-Bonab H, Esna-Ashari A, Kananian A (2010) Petrography and geochemistry of the Jajarm Karst bauxite ore deposit, NE Iran: implications for source rock material and ore genesis. Turk J Earth Sci 19:267–284Google Scholar
  28. Fernández-Caliani JC, Cantano M (2010) Intensive kaolinization during a lateritic weathering event in South-West Spain: mineralogical and geochemical inferences from a relict paleosol. Catena 80:23–33CrossRefGoogle Scholar
  29. Gamaletsos PN, Godelitsas A, Kasama T, Church NS, Douvalis AP, Göttlicher J, Steininger R, Boubnov A, Pontikes Y, Tzamos E, Bakas T, Filippidis A (2017) Nano-mineralogy and -geochemistry of high-grade diasporic karst-type bauxite from Parnassos-Ghiona mines, Greece. Ore Geol Rev 84:228–244CrossRefGoogle Scholar
  30. Hanilçi N (2013) Geological and geochemical evolution of the Bolkardagi bauxite deposits, Karaman, Turkey: transformation from shale to bauxite. J Geochem Explor 133:118–137CrossRefGoogle Scholar
  31. Kalaitzidis S, Siavalas G, Skarpelis N, Araujo CV, Christanis K (2010) Late Cretaceous coal overlying karstic bauxite deposits in the Parnassus-Ghiona Unit, Central Greece: coal characteristics and depositional environment. Int J Coal Geol 81:211–226CrossRefGoogle Scholar
  32. Kamineni DC, Efthekharnezad J (1977) Mineralogy of the Permian laterite of northwestern Iran. Tschermaks Mineral Petrogr Mitt 24:195–204CrossRefGoogle Scholar
  33. Karadag MM, Küpeli S, Arýk F, Ayhan A, Zedef V, Döyen A (2009) Rare earth element (REE) geochemistry and genetic implications of the Mortaş bauxite deposit (Seydişehir/Konya-Southern Turkey). Chem Erde-Geochem 69:143–159CrossRefGoogle Scholar
  34. Kesler SE, Jones HD, Furman FC, Sassen R, Anderson WH, Kyle JR (1994) Role of crude oil in the genesis of Mississippi Valley-type deposits: evidence from the Cincinnatirch. Geol 22:609–612CrossRefGoogle Scholar
  35. Khosravi M, Abedini A, Alipour S, Mongelli G (2017) The Darzi-Vali bauxite deposit, West-Azarbaidjan Province, Iran: critical metals distribution and parental affinities. J Afr Earth Sci 129:960–972CrossRefGoogle Scholar
  36. Laskou M, Economou-Eliopoulos M (2007) The role of micro-organisms on the mineralogical and geochemical characteristics of the Parnassos-Ghiona bauxite deposits, Greece. J Geochem Explor 93:67–77CrossRefGoogle Scholar
  37. Laskou M, Economou-Eliopoulos M (2013) Bio-mineralization and potential biogeochemical processes in bauxite deposits: genetic and ore quality significance. Mineral Petrol 107:471–486CrossRefGoogle Scholar
  38. Ling KY, Zhu XQ, Wang ZG, Han T, Tang HS, Chen WY (2013) Metallogenic model of bauxite in Central Guizhou Province: an example of Lindai deposit. Acta Geol Sin-Engl 87(6):1630–1642CrossRefGoogle Scholar
  39. Ling KY, Zhu XQ, Tang HS, Wang ZG, Yan HW, Han T, Chen WY (2015) Mineralogical characteristics of the karstic bauxite deposits in the Xiuwen ore belt, Central Guizhou Province, Southwest China. Ore Geol Rev 65:84–96CrossRefGoogle Scholar
  40. Ling KY, Zhu XQ, Tang HS, Li SX (2017) Importance of hydrogeological conditions during formation of the karstic bauxite deposits, Central Guizhou Province, Southwest China: a case study at Lindai deposit. Ore Geol Rev 82:198–216CrossRefGoogle Scholar
  41. Ling KY, Zhu XQ, Tang HS, Du SJ, Gu J (2018) Geology and geochemistry of the Xiaoshanba bauxite deposit, Central Guizhou Province, SW China: implications for the behavior of trace and rare earth elements. J Geochem Explor 190:170–186CrossRefGoogle Scholar
  42. Liu X, Wang Q, Deng J, Zhang Q, Sun S, Meng J (2010) Mineralogical and geochemical investigations of the Dajia Salento-type bauxite deposits, western Guangxi, China. J Geochem Explor 105:137–152CrossRefGoogle Scholar
  43. Lopez JMG, Bauluz B, Fernández-Nieto C, Oliete AY (2005) Factors controlling the trace element distribution in fine-grained rocks: the Albian kaolinite-rich deposits of the Oliete Basin (NE Spain). Chem Geol 214:1–19CrossRefGoogle Scholar
  44. Ma J, Wei G, Xu Y, Long W, Sun W (2007) Mobilization and re-distribution of major and trace elements during extreme weathering of basalt in Hainan Island, South China. Geochim Cosmochim Acta 71:3223–3237CrossRefGoogle Scholar
  45. MacLean WH, Bonavia FF, Sanna G (1997) Argillite debris converted to bauxite during karst weathering: evidence from immobile element geochemistry at the Olmedo deposit, Sardinia. Mineral Deposita 32:607–616CrossRefGoogle Scholar
  46. Maksimović Z, Pantó G (1991) Contribution to the geochemistry of the rare earth elements in the karst-bauxite deposits of Yugoslavia and Greece. Geoderma 51:93–109CrossRefGoogle Scholar
  47. Mameli P, Mongelli G, Oggiano G, Dinelli E (2007) Geological, geochemical and mineralogical features of some bauxite deposits from Nurra (Western Sardinia, Italy): insights on conditions of formation and parental affinity. Int J Earth Sci 96:887–902CrossRefGoogle Scholar
  48. Marker A, Oliveira JJ (1994) Climatic and morphological control of rare earth element distribution in weathering mantles on alkaline rocks. Catena 21:179–193CrossRefGoogle Scholar
  49. Marques JJ, Schulze DG, Curi N, Mertzman SA (2004) Trace element geochemistry in Brazilian Cerrado soils. Geoderma 121:31–43CrossRefGoogle Scholar
  50. McLennan SM (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Geochem Miner Rare Earth Elem:169–200Google Scholar
  51. Meshram RR, Randive KR (2011) Geochemical study of laterites of the Jamnagar district, Gujarat, India: implications on parent rock, mineralogy and tectonics. J Asian Earth Sci 42:1271–1287CrossRefGoogle Scholar
  52. Mongelli G (1997) Ce-anomalies in the textural components of Upper Cretaceous karst bauxites from the Apulian carbonate platform (southern Italy). Chem Geol 140:69–79CrossRefGoogle Scholar
  53. Mongelli G (2002) Growth of hematite and boehmite in concretions from ancient karst bauxite: clue for past climate. Catena 50:43–51CrossRefGoogle Scholar
  54. Mongelli G, Boni M, Buccione R, Sinisi R (2014) Geochemistry of the Apulian karst bauxites (southern Italy): chemical fractionation and parental affinities. Ore Geol Rev 63:9–21CrossRefGoogle Scholar
  55. Monsels DA, Bergen MJ (2017) Bauxite formation on Proterozoic bedrock of Suriname. J Geochem Explor 180:71–90CrossRefGoogle Scholar
  56. Mordberg LE (1996) Geochemistry of trace elements in Paleozoic bauxite profiles in northern Russia. J Geochem Explor 57:187–199CrossRefGoogle Scholar
  57. Muchangos AC (2006) The mobility of rare earth and other elements in the process of alteration of rhyolitic rocks to bentonite (Lebombo Volcanic Mountainous Chain, Mozambique). J Geochem Explor 88:300–303CrossRefGoogle Scholar
  58. Muttoni G, Gaetani M, Kent DV, Sciunnach D, Angiolini L, Berra F, Garzanti E, Mattei M, Zanchi A (2009) Opening of the Neo-Tethys Ocean and the Pangea B to Pangea a transformation during the Permian. GeoArabia 14:17–48Google Scholar
  59. Nesbitt HW (1979) Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature 279:206–210CrossRefGoogle Scholar
  60. Nesbitt HW, Markovics G (1997) Weathering of granodiorite crust, long-term storage of elements in weathering profiles, and petrogenesis of siliclastic sediments. Geochim Cosmochim Acta 61:1653–1670CrossRefGoogle Scholar
  61. Ohta A, Kawabe I (2001) REE(III) adsorption onto Mn dioxide (δ-MnO2) and Fe oxyhydroxide: Ce(III) oxidation by δ-MnO2. Geochim Cosmochim Acta 65:695–703CrossRefGoogle Scholar
  62. Oliveira FS, Varajão AFDC, Varajão CAC, Boulangé B, Soares CCV (2013) Mineralogical, micromorphological and geochemical evolution of the facies from the bauxite deposit of Barro Alto, Central Brazil. Catena 105:29–39CrossRefGoogle Scholar
  63. Radusinović S, Jelenković R, Pačevski A, Simić V, Božović D, Holclajtner-Antunović I, Životić D (2017) Content and mode of occurrences of rare earth elements in the Zagrad karstic bauxite deposit (Nikšić area, Montenegro). Ore Geol Rev 80:406–428CrossRefGoogle Scholar
  64. Schwertmann U, Pfab G (1996) Structural V and Cr in lateritic iron oxides: genetic implications. Geochim Cosmochim Acta 60:4279–4283CrossRefGoogle Scholar
  65. Southgate PN, Kyser TK, Scott DL, Large RR, Golding SD, Polito PA (2006) A basin system and fluid-flow analysis of the Zn-Pb-Ag Mount Isa-type deposits of northern Australia: identifying metal source, basinal brine reservoirs, times of fluid expulsion, and organic matter reactions. Econ Geol 101:1103–1115CrossRefGoogle Scholar
  66. Sparks DL (1995) Environmental soil chemistry. Academic Press, New YorkCrossRefGoogle Scholar
  67. Tang HS, Chen YJ, Wu G, Yang T (2009) Rare earth element geochemistry of carbonates of Dashiqiao Formation, Liaohe Group, eastern Liaoning province: implications for Lomagundi Event. Acta Petrol Sin-Engl 25:3075–3093Google Scholar
  68. Tang HS, Chen YJ, Santosh M, Zhong H, Yang T (2013) REE geochemistry of carbonates from the Guanmenshan Formation, Liaohe Group, NE Sino-Korean Craton: Implications for seawater compositional change during the Great Oxidation Event. Precambrian Res 227:316–336CrossRefGoogle Scholar
  69. Tardy Y (1992) Diversity and terminology of lateritic profiles. In: Martini IP, Chesworth W (eds) Weathering, soils & paleosols. Elsevier, Amsterdam, pp 379–406CrossRefGoogle Scholar
  70. Tardy Y, Kobilsek B, Paquet H (1991) Mineralogical composition and geographical distribution of African and Brazilian periatlantic laterites. The influence of continental drift and tropical paleoclimates during the past 150 million years and implications for India and Australia. J Afr Earth Sci 12:283–295CrossRefGoogle Scholar
  71. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, OxfordGoogle Scholar
  72. Wang Q, Deng J, Liu X, Zhang Q, Sun S, Jiang C, Zhou F (2010) Discovery of the REE minerals and its geological significance in the Quyang bauxite deposit, West Guangxi. China J Asian Earth Sci 39:701–712CrossRefGoogle Scholar
  73. Wang QF, Liu XF, Yan CH, Cai SH, Li ZM, Wang YR, Zhao JM, Li GJ (2012) Mineralogical and geochemical studies of boron-rich bauxite ore deposits in the Songqi region, SW Henan, China. Ore Geol Rev 48:258–270CrossRefGoogle Scholar
  74. Wei X, Ji H, Wang S, Chu H, Song C (2014) The formation of representative lateritic weathering covers in south-central Guangxi (southern China). Catena 118:55–72CrossRefGoogle Scholar
  75. White AF, Bullen TD, Schulz MS, Blum AE, Huntington TG, Peters NE (2001) Differential rates of feldspar weathering in granitic regoliths. Geochim Cosmochim Acta 65:847–869CrossRefGoogle Scholar
  76. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2019

Authors and Affiliations

  • Ali Abedini
    • 1
    Email author
  • Masoud Habibi Mehr
    • 1
  • Maryam Khosravi
    • 2
  • Ali Asghar Calagari
    • 3
  1. 1.Department of Geology, Faculty of SciencesUrmia UniversityUrmiaIran
  2. 2.Department of Earth Sciences, Faculty of SciencesShiraz UniversityShirazIran
  3. 3.Department of Earth Sciences, Faculty of Natural SciencesUniversity of TabrizTabrizIran

Personalised recommendations