New sections of the Cretaceous–Paleogene transition in the southwestern Tethys (Médéa, northern Algeria): planktic foraminiferal biostratigraphy and biochronology

  • Fariza Metsana-Oussaid
  • Djelloul Belhai
  • Ignacio ArenillasEmail author
  • José Antonio Arz
  • Vicente Gilabert
Original Paper


Two sections (Sidi Ziane and Djebel Zakhamoune from Médéa, northern Algeria) of the Cretaceous–Paleogene (K–Pg) transition have been found, sampled, and studied in detail for the first time in Algeria. In order to obtain a biochronological control to evaluate the potential of the Médéa area for the study of the K/Pg boundary event and close paleoclimatic episodes as LMWE and Dan-C2, we have reviewed the biostratigraphical scales with planktic foraminifera from the uppermost Maastrichtian to the middle Danian and dated the main key bioevents through graphic correlations comparing the Bottaccione (Italy), Agost and Caravaca (Spain), and Kalaat Senan (Tunisia) sections. The biostratigraphic study has revealed the presence of the last biozone of the Maastrichtian in both sections (zone CF1 or Plummerita hantkeninoides zone). The thickness of this biozone (13.5 m in Sidi Ziane and 9 m in Djebel Zakhamoune) is one of the largest identified to date, suggesting that the uppermost Maastrichtian is complete and continuous in the Médéa area. Based on graphic correlation, it has been determined that sedimentation rates of the Maastrichtian in Sidi Ziane and Djebel Zakhamoune are, respectively, 8.98 and 6.58 cm/kyr, only comparable with the most expanded and continuous sections worldwide, such as Aïn Settara (Kalaat Senan). It has also recognized a hiatus affecting the lower Danian in both sections, estimated in 610.4 and 644.9 kyr long in Djebel Zakhamoune and Sidi Ziane, respectively. Nevertheless, the presence of reworked specimens of the index species Parvularugoglobigerina longiapertura strongly suggests that the lowermost Danian may be recorded in the Médéa area.


Micropaleontology Graphic correlation Danian Maastrichtian Tell Atlas 



We thank Sherif Farouk for his helpful comments. The authors would like to acknowledge the use of the Servicio General de Apoyo a la Investigación-SAI, Universidad de Zaragoza.

Funding information

This work was supported by MINECO/FEDER-UE (project number CGL2015-64422-P); by MCIU/AEI/FEDER, UE (grant number PGC2018-093890-B-I00); and by the Departamento de Educación y Ciencia of the Aragonian Government, co-financed by the European Social Fund [grant number DGA group E33_17R]. Vicente Gilabert acknowledges the support from the Spanish Ministerio de Economía, Industria y Competitividad (FPI grant BES-2016-077800).


  1. Alvarez W, Arthur MA, Fischer AG, Lowrie W, Napoleone G, Premoli Silva I, Roggenthen WA (1977) Upper Cretaceous-Paleocene magnetic stratigraphy at Gubbio, Italy. V Type section for the Late Cretaceous-Paleocene geomagnetic reversal time scale. Geol Soc Am Bull 88:383–388CrossRefGoogle Scholar
  2. Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:1095–1108CrossRefGoogle Scholar
  3. Apellaniz E, Baceta JI, Bernaola-Bilbao G, Núñez-Betelu K, Orue-Etxebarria X, Payros A, Pujalte V, Robin E, Rocchia R (1997) Analysis of uppermost Cretaceous-lowermost Tertiary hemipelagic successions in the Basque Country (Western Pyrenees): evidence for a sudden extinction of more than half planktic foraminifer species at the K/T boundary. Bull Soc géol France 168(6):783–793Google Scholar
  4. Arenillas I (1996) Los foraminíferos planctónicos del Paleoceno-Eoceno inferior: Sistemática, Bioestratigrafía, Cronoestratigrafía y Paleoceanografía. Doctoral thesis, Prensas Universitarias de Zaragoza (2000), Zaragoza, SpainGoogle Scholar
  5. Arenillas I (1998) Biostratigrafía con foraminíferos planctónicos del Paleoceno y Eoceno inferior de Gubbio (Italia): calibración biomagnetoestratigráfica. Neues Jahrb Geol Paläontol Monatsh 5:299–320Google Scholar
  6. Arenillas I (2011) Análisis paleoecológico de foraminíferos planctónicos del tránsito Daniense-Selandiense en el Tetis y sus implicaciones taxonómicas. Rev Esp Micropalentol 43(1–2):55–108Google Scholar
  7. Arenillas I (2012) Patterns of spatio-temporal distribution as criteria for the separation of planktic foraminiferal species across the Danian-Selandian transition in Spain. Acta Paleontol Polon 57:401–422CrossRefGoogle Scholar
  8. Arenillas I, Arz JA (2000) Parvularugoglobigerina eugubina type-sample at Ceselli (Italy): planktic foraminiferal assemblage and lowermost Danian biostratigraphic implications. Riv Ital Paleontol Stratigr 106(3):379–390Google Scholar
  9. Arenillas I, Arz JA (2013a) Origin and evolution of the planktic foraminiferal family Eoglobigerinidae Blow (1979) in the early Danian (Paleocene). Rev Mex Cienc Geol 30(1):159–177Google Scholar
  10. Arenillas I, Arz JA (2013b) New evidence on the origin of nonspinose pitted-cancellate species of the early Danian planktonic foraminifera. Geol Carpath 64(3):237–251CrossRefGoogle Scholar
  11. Arenillas I, Arz JA (2017) Benthic origin and earliest evolution of the first planktonic foraminifera after the Cretaceous/Paleogene boundary mass extinction. Hist Biol 29(1):17–24CrossRefGoogle Scholar
  12. Arenillas I, Molina E (1997) Análisis cuantitativo de los foraminíferos planctónicos del Paleoceno de Caravaca (Cordilleras Béticas): Cronoestratigrafía, bioestratigrafía y evolución de las asociaciones. Rev Esp Paleontol 12(2):207–232Google Scholar
  13. Arenillas I, Arz JA, Molina E, Dupuis C (2000a) An independent test of planktic foraminiferal turnover across the Cretaceous/Paleogene (K/P) boundary at El Kef, Tunisia: catastrophic mass extinction and possible survivorship. Micropaleontology 46(1):31–49Google Scholar
  14. Arenillas I, Arz JA, Molina E, Dupuis C (2000b) The Cretaceous/Paleogene (K/P) boundary at Aïn Settara, Tunisia: sudden catastrophic mass extinction in planktic foraminifera. J Foraminifer Res 30(3):202–218CrossRefGoogle Scholar
  15. Arenillas I, Arz JA, Molina E (2004) A new high-resolution planktic foraminiferal zonation and subzonation for the lower Danian. Lethaia 37:79–95CrossRefGoogle Scholar
  16. Arenillas I, Arz JA, Grajales-Nishimura JM, Murillo-Muñetón G, Alvarez W, Camargo-Zanoguera A, Molina E, Rosales-Domínguez C (2006) Chicxulub impact event is Cretaceous/Paleogene boundary in age: new micropaleontological evidence. Earth Planet Sci Lett 249:241–257CrossRefGoogle Scholar
  17. Arenillas I, Arz JA, Náñez C (2016) New species of genus Trochoguembelitria from the lowermost Danian of Tunisia—biostratigraphic and evolutionary implications in planktonic foraminifera. Palaeontogr Abt A 305(4–6):133–160Google Scholar
  18. Arenillas I, Arz JA, Gilabert V (2018) Blooms of aberrant planktic foraminifera across the K/Pg boundary in the Western Tethys: causes and evolutionary implications. Paleobiology 44(3):460–489CrossRefGoogle Scholar
  19. Arz JA (1996) Los foraminíferos planctónicos del Campaniense y Maastrichtiense: Bioestratigrafía, Cronoestratigrafía y eventos paleoecológicos. Doctoral thesis, Prensas Universitarias de Zaragoza (2000), Zaragoza, SpainGoogle Scholar
  20. Arz JA, Molina E (2002) Bioestratigrafía y cronoestratigrafía con foraminíferos planctónicos del Campaniense superior y Maastrichtiense de latitudes subtropicales y templadas (España, Francia y Tunicia). Neues Jahrb Geol Palaontol Abh 224:161–195Google Scholar
  21. Arz JA, Arenillas I, Molina E, Dupuis C (1999) Los efectos tafonómico y “Signor-Lipps” sobre la extinción en masa de foraminíferos planctónicos en el límite Cretácico/Terciario de Elles (Tunicia). Rev Soc Geol España 12(2):251–268Google Scholar
  22. Arz JA, Arenillas I, Molina E, Sepúlveda R (2000) La estabilidad faunística de foraminíferos planctónicos en el Maastrichtiense superior y su extinción en masa catastrófica en el límite K/T de Caravaca, España. Rev Geol Chile 27(1):27–47CrossRefGoogle Scholar
  23. Auboin J, Durand Delga M (1971) Aire méditerranéenne. Encyclopaedia Universalis 10:743–745Google Scholar
  24. Barnet JSK, Littler K, Kroon D, Leng MJ, Westerhold T, Röhl U, Zachos JC (2017) A new high-resolution chronology for the late Maastrichtian warming event: establishing robust temporal links with the onset of Deccan volcanism. Geology 46(2):147–150CrossRefGoogle Scholar
  25. Berggren WA (1969) Rates of evolution in some Cenozoic planktonic foraminifera. Micropaleontology 15(3):351–365CrossRefGoogle Scholar
  26. Berggren WA (1977) Atlas of Paleogene planktonic foraminifera. Some species of the genera Subbotina, Planorotalites, Morozovella, Acarinina and Truncorotaloides oceanic micropaleontology, Ramsay, ATS, pp 250–299Google Scholar
  27. Berggren WA, Miller KG (1988) Paleogene tropical planktonic foraminiferal biostratigraphy and magnetobiochronology. Micropaleontology 34:362–380CrossRefGoogle Scholar
  28. Berggren WA, Norris RD (1997) Biostratigraphy, phylogeny and systematics of Paleocene trochospiral planktic foraminifera. Micropaleontology 43:1–116CrossRefGoogle Scholar
  29. Berggren WA, Pearson PN (2005) A revised tropical to subtropical Paleogene planktonic foraminiferal zonation. J Foraminifer Res 35:279–298CrossRefGoogle Scholar
  30. Berggren WA, Kent DV, Swisher III CC, Aubry MP (1995) A revised Paleogene geochronology and chronostratigraphy. In: Berggren WA, Kent DV, Aubry MP, Hardenbol J (eds) Geochronology, time scales and global stratigraphic correlation. SEPM Sp Pub 54:129–213Google Scholar
  31. Birch HS, Coxall HK, Pearson PN, Kroon D, Schmidt DN (2016) Partial collapse of the marine carbon pump after the Cretaceous-Paleogene boundary. Geology 44:287–290CrossRefGoogle Scholar
  32. Blakey RC (2011) Paleogeography of Europe series. Northern Arizona University, Colorado Plateu Geosystems Inc, Deep Time Maps™. Accessed 25 July 2007
  33. Blow WH (1969) Late Middle Eocene to Recent planktonic foraminiferal biostratigraphy. In: Brönnimann O, Renz HH (eds), Proceed I Int Conf Plank Microf, 1:199–422Google Scholar
  34. Blow WH (1979) The Cainozoic Globigerinidae. A study of the morphology, taxonomy, evolutionary relationship and the stratigraphical distribution of some Globigerinidae (mainly Globigerinacea). EJ Brill, LeidenGoogle Scholar
  35. Bolli HM (1957) The genera Globigerina and Globorotalia in the Paleocene-lower Eocene Lizard Springs formation of Trinidad, B.W.I. US Nat Mus Bull 215:97–124Google Scholar
  36. Bolli HM (1966) Zonation of Cretaceous to Pliocene marine sediments based on planktonic foraminifera. Bol inf Asoc Venezolana Geol Min Petrol 9(1):1–34Google Scholar
  37. Bouillin JP (1978) La transversale de Collo (Petite Kabylie). Mém Soc Géol Fra 135:1–84Google Scholar
  38. Brönnimann P (1952) Globigerinidae from the Upper Cretaceous (Cenomanian–Maastrichtian) of Trinidad. Bull Am Paleontol 34(140):1–30Google Scholar
  39. Canudo JI (1994) Luterbacheria: un nuevo género de foraminífero planctónico (Protozoa) del Paleoceno-Eoceno y sus relaciones filogenéticas. Rev Esp Micropaleontol 26(2):23–42Google Scholar
  40. Canudo JI, Molina E (1992) Bioestratigrafía con foraminíferos planctónicos del Paleógeno del Pirineo. Neues Jahrb Geol Palaontol Abh 186:97–135Google Scholar
  41. Canudo JI, Keller J, Molina E (1991) Cretaceous/Tertiary boundary extinction pattern and faunal turnover at Agost and Caravaca, SE Spain. Mar Micropaleontol 17:319–341CrossRefGoogle Scholar
  42. Caron M (1985) Cretaceous planktic foraminifera. In: Bolli HM, Saunders JB, Perch-Nielsen K (eds) Plankton stratigraphy. Cambridge University Press, CambridgeGoogle Scholar
  43. Chacón B (2002) Las sucesiones hemipelágicas del final del Cretácico e inicio del Paleógeno en el SE de la Placa Ibérica: Estratigrafía de eventos y evolución de la cuenca. Doctoral Thesis, Universidad Complutense, Madrid, SpainGoogle Scholar
  44. Chacón B, Martín-Chivelet J (2005) Subdivisión litoestratigráfica de las series hemipelágicas de edad Coniaciense-Thanetiense en el Prebético oriental (SE de España). Rev Soc Geol España 18(1–2):3–20Google Scholar
  45. Chenet AL, Quidelleur X, Fluteau F, Courtillot V, Bajpai S (2007) 40K-40 Ar dating of the Main Deccan large igneous province: further evidence of KTB age and short duration. Earth Planet Sci Lett 263:1–15Google Scholar
  46. Coccioni R, Premoli-Silva I (2015) Revised Upper Albian – Maastrichtian planktonic foraminiferal biostratigraphy and magneto-stratigraphy of the classical Tethyan Gubbio section (Italy). Newsl Stratigr 48(1):47–90CrossRefGoogle Scholar
  47. Coccioni R, Frontalini F, Bancalà G, Fornaciari E, Jovane L, Sprovieri M (2010) The Dan-C2 hyperthermal event at Gubbio (Italy): global implications, environmental effects, and cause(s). Earth Planet Sci Lett 297:298–305CrossRefGoogle Scholar
  48. De Chevilly F., Grégoire, J.-P, Kieken, M. (1961) Carte géologique de l'Algérie 1: 50,000. 111, Souagui. Publ Serv Carte géol, AlgérieGoogle Scholar
  49. Dupuis C, Steurbaut E, Molina E, Rauscher R, Tribovillard NP, Arenillas I, Arz JA, Robaszynski F, Caron M, Robin E, Rocchia R, Lefèvre I (2001) The Cretaceous-Paleogene (K/P) boundary in the Aïn Settara section (Kalaat-Senan, Central Tunisia): lithological, micropaleontological and geochemical evidence. Bull Inst Roy Sci Nat Belgique 71:169–190Google Scholar
  50. Farouk S (2014) Maastrichtian carbon cycle changes and planktonic foraminiferal bioevents at Gebel Matulla, west-central Sinai, Egypt. Cretac Res 50:238–251CrossRefGoogle Scholar
  51. Farouk S (2016) Paleocene stratigraphy in Egypt. J Afr Earth Sci 113:126–152CrossRefGoogle Scholar
  52. Farouk S, Jain S (2018) Benthic foraminiferal response to relative sea-level changes in the Maastrichtian-Danian succession at the Dakhla Oasis, Western Desert, Egypt. Geol Mag 155(3):729–746CrossRefGoogle Scholar
  53. Farouk S, Marzouk AM, Fayez A (2014) The Cretaceous / Paleogene boundary in Jordan. J Asian Earth Sci 94:113–125CrossRefGoogle Scholar
  54. Font E, Adatte T, Sial AN, Drude de Lacerda L, Keller G, Punekar J (2016) Mercury anomaly, Deccan volcanism, and the end-Cretaceous mass extinction. Geology 44:171–17Google Scholar
  55. Galeotti S, Moretti M, Cappelli C, Phillips J, Lanci L, Littler K, Monechi S, Petrizzo MR, Premoli Silva I, Zachos JC (2015) The Bottaccione section at Gubbio, central Italy: a classic Palaeocene Tethyan setting revisited. Newsl Stratigr 48(3):325–339CrossRefGoogle Scholar
  56. Gallala N (2013) Planktonic foraminiferal biostratigraphy and correlation across the Cretaceous-Paleogene transition at the Tethyan and the Atlantic realms. Paleontol J 2013:1–20CrossRefGoogle Scholar
  57. Gardin S, Galbrun B, Thibault N, Coccioni R, Premoli Silva I (2012) Bio-magnetochronology for the upper Campanian – Maastrichtian from the Gubbio area, Italy: new results from the Contessa highway and Bottaccione sections. Newsl Stratigr 45(1):75–103CrossRefGoogle Scholar
  58. Gradstein FM, Ogg JG, Schmitz M, Ogg G (2012) The geologic time scale 2012. Elsevier, AmsterdamGoogle Scholar
  59. Groot JJ, De Jonge RBG, Langereis CG, Ten Kate WGHZ, Smit J (1989) Magnetostratigraphy of the Cretaceous-Tertiary boundary at Agost (Spain). Earth Plan Sci Lett 94:385–397CrossRefGoogle Scholar
  60. Guiraud R (1998) Mesozoic rifting and basin inversion along the northern African Tethyan margin: an overview. Geol Soc London Spec Publ 133:217–229CrossRefGoogle Scholar
  61. Guiraud R, Bosworth W (1997) Senonian basin inversion and rejuvenation of rifting in Africa and Arabia: synthesis and implications to plate-scale tectonics. Tectonophysics 282:39–82CrossRefGoogle Scholar
  62. Guiraud R, Bosworth W, Thierry J, Delplanque A (2005) Phanerozoic geological evolution of northern and central Africa: an overview. J Afr Earth Sci 43:83–143CrossRefGoogle Scholar
  63. Hildebrand AR, Penfield GT, Kring DA, Pilkington M, Camargo A, Jacobsen SB, Boynton WV (1991) Chicxulub crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatan peninsula, Mexico. Geology 19:867–871CrossRefGoogle Scholar
  64. Huber BT, MacLeod KG, Tur NA (2008) Chronostratigraphic framework for upper Campanian–Maastrichtian sediments on the Blake Nose (subtropical North Atlantic). J Foraminifer Res 38:162–182CrossRefGoogle Scholar
  65. Ion J, Szasz L (1994) Biostratigraphy of the Upper Cretaceous in Romania. Cretac Res 15:59–87CrossRefGoogle Scholar
  66. Kaiho K, Kajiwara Y, Tazaki K, Ueshima M, Takeda N, Kawahata H, Arinobu T, Ishiwatari R, Hirai A, Lamolda MA (1999) Oceanic primary productivity and dissolved oxygen levels at the Cretaceous/Tertiary boundary: their decrease, subsequent warming, and recovery. Paleoceanography 14(4):511–524CrossRefGoogle Scholar
  67. Keller G (1988) Extinction, survivorship and evolution of planktic foraminifera across the Cretaceous/Tertiary boundary at El Kef, Tunisia. Mar Micropaleontol 13:239–263CrossRefGoogle Scholar
  68. Keller G (1993) The Cretaceous/Tertiary boundary transitions in the Antarctic Ocean and its global implications. Mar Micropaleontol 21:1–45CrossRefGoogle Scholar
  69. Keller G, Lindinger M (1989) Stable isotope, TOC and CaCO3, record across the Cretaceous/Tertiary boundary at El Kef, Tunisia. Palaeogeogr Palaeoclimatol Palaeoecol 73:243–265CrossRefGoogle Scholar
  70. Keller G, Li L, MacLeod N (1995) The Cretaceous/Tertiary boundary stratotype sections at El Kef, Tunisia: how catastrophic was the mass extinction? Palaeogeogr Palaeoclimatol Palaeoecol 119:221–254CrossRefGoogle Scholar
  71. Keller G, Bhowmick PH, Upadhyay H, Dave A, Reddy AN, Jaiprakash BC, Adatte T (2011) Deccan volcanism linked to the Cretaceous-Tertiary boundary mass extinction: new evidence from ONGC wells in the Krishna-Godavari basin. J Geol Soc India 78:399–428CrossRefGoogle Scholar
  72. Keller G, Mateo P, Punekar J (2016) Upheavals during the Late Maastrichtian: volcanism, climate and faunal events preceding the end-Cretaceous mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 441:137–151CrossRefGoogle Scholar
  73. Kieken M (1963) Notice de la carte géologique à 1/50 000 (levés de F. De Chevilly, J.Y. Grégoire). Publ Serv Carte Géol, AlgérieGoogle Scholar
  74. Kieken M (1974) Etude géologique du Hodna, du Titteri et de la partie occidentale des Biban (Dépt. D’Alger-Algérie). Thèse de Doctorat es-Sciences, Alger, Service géologique de l’AlgérieGoogle Scholar
  75. Leonov GP, Alimarina VP (1961) Stratigraphy and foraminifera of Cretaceous-Paleogene “transition” beds of the central part of the North Caucasus. Moscow Univ Geol Faculty, sbornik Trudov, pp 29–60Google Scholar
  76. Li L, Keller G (1998) Abrupt deep-sea warming at the end of the Cretaceous. Geology 26:995–998CrossRefGoogle Scholar
  77. Lowrie W, Alvarez W, Napoleone G, Perch Nielsen K, Premoli Silva I, Toumarkine M (1982) Paleogene magnetic stratigraphy in Umbrian pelagic carbonate rocks: the Contessa sections, Gubbio. Geol Soc Am Bull 93:414–432CrossRefGoogle Scholar
  78. Luterbacher HP (1964) Studies in some Globorotalia from the Paleocene and lower Eocene of the central Apennines. Eclogae Geol Helvet 57(2):631–730Google Scholar
  79. Luterbacher HP (1975) Planktonic foraminifera of the Paleocene and early Eocene, Possagno section. Schweiz Paläontol Abh 97:57–67Google Scholar
  80. Luterbacher HP, Premoli Silva I (1964) Biostratigrafia del limite Cretaceo-Terziario nell’Apennino Centrale. Riv Ital Paleontol Stratigr 70(1):67–128Google Scholar
  81. Martínez-Ruiz F, Ortega-Huertas M, Palomo-Delgado I, Barbieri M (1992) The geochemistry and mineralogy of the Cretaceous-Tertiary boundary at Agost (southeast Spain). Chem Geol 95:265–281CrossRefGoogle Scholar
  82. Martínez-Ruiz F, Ortega-Huertas M, Palomo-Delgado I, Acquafredda P (1997) Quench textures in altered spherules from the Cretaceous-Tertiary boundary layer at Agost and Caravaca, SE Spain. Sediment Geol 113:137–147CrossRefGoogle Scholar
  83. Molina E, Arenillas I, Arz JA (1996) The Cretaceous/Tertiary boundary mass extinction in planktic foraminifera at Agost (Spain). Rev Micropaleontol 39(3):225–243CrossRefGoogle Scholar
  84. Molina E, Arenillas I, Arz JA (1998) Mass extinction in planktic foraminifera at the Cretaceous/Tertiary boundary in subtropical and temperate latitudes. Bull Soc Géol France 169(3):351–363Google Scholar
  85. Molina E, Alegret L, Arenillas I, Arz JA (2005) The Cretaceous/Paleogene boundary at the Agost section revisited: paleoenvironmental reconstruction and mass extinction pattern. J Iberian Geol 31:137–150Google Scholar
  86. Molina E, Alegret L, Arenillas I, Arz JA, Gallala N, Hardenbol J, von Salis K, Steurbaut E, Vandenberghe N, Zaghbib-Turki D (2006) The global stratotype section and point of the Danian stage (Paleocene, Paleogene, “Tertiary”, Cenozoic) at El Kef, Tunisia: original definition and revision. Episodes 29(4):263–278Google Scholar
  87. Molina E, Alegret L, Arenillas I, Arz JA, Gallala N, Grajales-Nishimura M, Murillo-Muñetón G, Zaghbib-Turki D (2009) The global boundary stratotype section and point for the base of the Danian stage (Paleocene, Paleogene, “Tertiary”, Cenozoic): auxiliary sections and correlation. Episodes 32(2):84–95Google Scholar
  88. Montanari A (1991) Authigenesis of impact spheroids in the K/T boundary clay from Italy: new constraints for high-resolution stratigraphy of terminal Cretaceous events. J Sediment Petrol 61(3):315–339Google Scholar
  89. Morozova VG (1957) Nadsemeystvo foraminifer Globigirinidea superfam. nova i nekotorye ego predstaviteli [Foraminiferal superfamily Globigerinidea superfam. nov., and some of its representatives]. Doklady Akad. Nauk SSSR 114:1109–1112Google Scholar
  90. Mukhopadhyay S, Farley KA, Montanari A (2001) A short duration of the Cretaceous-Tertiary boundary event: evidence from extraterrestrial Helium-3. Science 291:1952–1955CrossRefGoogle Scholar
  91. Nederbragt AJ (1990) Biostratigraphy and paleoceanographic potential of the Cretaceous planktic foraminifera Heterohelicidae. Centrale Huisdrukkerij Vrije Universiteit, Amsterdam, Academisch proefschriftGoogle Scholar
  92. Nederbragt AJ (1991) Late Cretaceous biostratigraphy and development of Heterohelicidae (planktic foraminifera). Micropaleontology 37:329–372CrossRefGoogle Scholar
  93. Olsson RK, Hemleben C, Berggren WA, Liu C (1992) Wall texture classification of planktonic foraminifera genera in the Lower Danian. J Foraminifer Res 22(3):195–213CrossRefGoogle Scholar
  94. Olsson RK, Hemleben C, Berggren WA, Huber BT (1999) Atlas of Paleocene planktonic foraminifera. Smithson Contrib Paleobiol 85:1–252CrossRefGoogle Scholar
  95. Pérez-Rodríguez I, Lees JA, Larrasoaña JC, Arz JA, Arenillas I (2012) Planktonic foraminiferal–nannofossil biostratigraphy and magnetostratigraphy of the uppermost Campanian and Maastrichtian at Zumaia, northern Spain. Cretac Res 37:100–126CrossRefGoogle Scholar
  96. Petersen SV, Dutton A, Lohmann KC (2016) End-Cretaceous extinction in Antarctica linked to both Deccan volcanism and meteorite impact via climate change. Nat Commun 7:12079CrossRefGoogle Scholar
  97. Premoli Silva I, Sliter WV (1995) Cretaceous planktonic foraminiferal biostratigraphy and evolutionary trends from the Bottaccione section, Gubbio, Italy. Paleontographia Italica 82:1–89Google Scholar
  98. Premoli Silva I, Paggi L, Monechi S (1976) Cretaceous through Paleocene biostratigraphy of the pelagic sequence at Gubbio, Italy. Mem Soc Geol It 2:21–32Google Scholar
  99. Premoli Silva I, Napoleone G, Fischer A (1980) La sezione magnetostratigrafica di Gubbio: indagini nella storia del Cretacico-Paleogene. Mem Soc Geol Ital 21:301–311Google Scholar
  100. Punekar J, Mateo P, Keller G (2014) Effects of Deccan volcanism on paleoenvironment and planktic foraminifera: a global survey. GSA Spec Pap 505:91–116Google Scholar
  101. Punekar J, Keller G, Khozyem HM, Adatte T, Font E, Spangnberg J (2016) A multi-proxy approach to decode the end-Cretaceous mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 441:116–136CrossRefGoogle Scholar
  102. Quillévéré F, Norris RD, Kroon D, Wilson PA (2008) Transient ocean warming and shifts in carbon reservoirs during the early Danian. Earth Planet Sci Lett 265:600–615CrossRefGoogle Scholar
  103. Renne PR, Sprain CJ, Richards MA, Self S, Vanderkluysen L, Pande K (2015) State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact. Science 350:76–78CrossRefGoogle Scholar
  104. Richards MA, Alvarez W, Self S, Karlstrom L, Renne PR, Manga M, Sprain CJ, Smit J, Vanderkluysen L, Gibson SA (2015) Triggering of the largest Deccan eruptions by the Chicxulub impact. GSA Bull 127:1507–1520CrossRefGoogle Scholar
  105. Robaszynski F, Caron M (1995) Foraminifères planctoniques du Crétacé: Commentaire de la zonation Europe-Méditerranée. Bull Soc Géol Fr 166(6):681–692Google Scholar
  106. Robaszynski F, Caron M, González-Donoso JM, Wonders AAH (1983-1984) Atlas of Late Cretaceous globotruncanids. Rev Micropaleontol 26(3–4):1–305Google Scholar
  107. Schoene B, Samperton KM, Eddy MP, Keller G, Adatte T, Bowring SA, Khadri SFR, Gertsch B (2015) U-Pb geochronology of the Deccan traps and relation to the end-Cretaceous mass extinction. Science 347:182–184CrossRefGoogle Scholar
  108. Scotese CR (2014) Atlas of Late Cretaceous paleogeographic Maps. PALEOMAP atlas for ArcGIS (PALEOMAP project, Evanstan, IL), 2: map 16Google Scholar
  109. Shaw AB (1964) Time in stratigraphy. McGraw-Hill, New York, NYGoogle Scholar
  110. Smit J (1982) Extinction and evolution of planktonic foraminifera after a major impact at the Cretaceous/Tertiary boundary. Geol Soc Am Spec Pap 190:329–352Google Scholar
  111. Smit J (1999) The global stratigraphy of the Cretaceous-Tertiary boundary impact ejecta. Ann Rev Earth Pl Sci 27:75–113CrossRefGoogle Scholar
  112. Smit J (2004) The section of the Barranco del Gredero (Caravaca, SE Spain): a crucial section for the Cretaceous/Tertiary boundary impact extinction hypothesis. J Iber Geol 31:179–191Google Scholar
  113. Smit J, Hertogen J (1980) An extraterrestrial event at the Cretaceous-Tertiary boundary. Nature 285:198–200CrossRefGoogle Scholar
  114. Sprain CJ, Renne PR, Clemens WA, Wilson GP (2018) Calibration of chron C29r: new high-precision geochronologic and paleomagnetic constraints from the Hell Creek region, Montana. GSA Bull 130:1615–1644. CrossRefGoogle Scholar
  115. Stainforth RM, Lamb JL, Luterbacher H, Beardand JH, Jeffords RM (1975) Cenozoic planktonic foraminifera1 zonation and characteristics of index form. Univ Kansas Paleont Contr Art 62:l–425Google Scholar
  116. Steurbaut E, Dupuis C, Arenillas I, Molina E, Matmati MF (2000) The Kalaat Senan section in Central Tunisia: a potencial reference section for the Danian/Selandian boundary. GFF 122(1):158–160CrossRefGoogle Scholar
  117. Thibault N, Galbrun B, Gardin S, Minoletti F, Le Callonnec LL (2016) The end-Cretaceous in the southwestern Tethys (Elles, Tunisia): orbital calibration of paleoenvironmental events before the mass extinction. Int J Earth Sci (Geol Rundschau) 105:771–795CrossRefGoogle Scholar
  118. Toumarkine M, Luterbacher HP (1985) Paleocene and Eocene planktic foraminifera. In: Bolli HM, Saunders JB, Perch-Nielsen K (eds) Plankton stratigraphy. Cambridge University PressGoogle Scholar
  119. van Veen GW (1969) Geological investigations in the region west of Caravaca, south-eastern Spain. University dissertation, Amsterdam University, NetherlandsGoogle Scholar
  120. Vera JA, García-Hernández M, López Garrido AC, Comas MJ, Ruíz-Ortíz PA, Martín-Algarra A (1982) La Cordillera Bética. In: García A (chief coordinator) El Cretácico de España, Editorial Univ Complutense, Madrid, SpainGoogle Scholar
  121. Wade BR, Pearson PN, Berggren WA, Pälike H (2011) Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth-Sci Rev 104:111–142CrossRefGoogle Scholar
  122. Wildi W (1983) La chaîne tello rifaine (Algérie, Maroc, Tunisie): structure, stratigraphie et évolution du Trias au Miocène. Rev Géol Dynam Géog Phys 24(3):201–297Google Scholar

Copyright information

© Saudi Society for Geosciences 2019

Authors and Affiliations

  • Fariza Metsana-Oussaid
    • 1
  • Djelloul Belhai
    • 1
  • Ignacio Arenillas
    • 2
    Email author
  • José Antonio Arz
    • 2
  • Vicente Gilabert
    • 2
  1. 1.Faculté des Sciences de la Terre de Géographie et Aménagement du TerritoireUniversité des Sciences et de la Technologie Houari Boumediene (USTHB)AlgiersAlgeria
  2. 2.Departamento de Ciencias de la Tierra, and Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA)Universidad de ZaragozaZaragozaSpain

Personalised recommendations