Neotectonic structures imaged by seismic velocity along the Isparta Angle

  • Şakir ŞahinEmail author
  • Ibrahim Abubakar
  • Mehmet Özçelik
  • Mohamed Farouk Abdelwahed
  • Erdinç Oksum
Original Paper


The Isparta Angle (IA) is formed as a morphotectonic pattern and located in the north of the Antalya Gulf. It is a seismotectonically very active zone as in the Eastern Mediterranean Region. The shape of Isparta Angle is a wedge-like with flanks oriented NE–SW in the west and NW–SE in the east rather than compressional E–W-oriented structures preceding its present shape. It results from the clockwise and anti-clockwise rotation of the Anatolian Plate from the Early Paleocene to the Early Pliocene. In this study, we determined the neotectonic pattern of the IA by using arrival time data of P and S waves. We assessed the 3-D tomographic images from the data of local earthquakes. The tomographic results verified the major tectonic structures and discontinuities in the studied area. The results have revealed the young structural heterogeneities related to the seismotectonic zones. While the higher Vp and Vs distributions are determined in the shallow levels of the earth, low-velocity perturbations are extensively distributed at deeper levels of the crust. The seismotectonic activity, seen along heterogeneous zones, denotes the high-velocity perturbation and is related to the pre-existing faults. The results of checkerboard tests showed that the anomalies are reliable down to approximately 40 km depth. From the middle to the lower crust, the low-velocity zones are related to the geophysical and geological evidence in the Fethiye–Burdur Fault Zone (FBFZ) and the existence of mantle material is consistent with the partial melt in the upper mantle. Furthermore, the present study revealed the new active zones from 3-D tomographic results: the NW-trending Yalvaç, NE-trending Gelendost, and approximately N–S-trending Eğirdir–Kovada grabens existing in the northern core of IA.


3-D tomography Earthquake Isparta Angle Seismotectonics 



We thank Ayşe Iren for his help in Suleyman Demirel University.


  1. Abdewahed, M. F., Zhao, D. (2006). Tomotools, seismic tomography tools in seismology V1.0, Geodynamics Research Center, Ehime University, JapanGoogle Scholar
  2. Agostini S, Doglioni C, Innocenti F, Manetti P, Tonarini S (2010) On the geodynamics of the Aegean rift. Tectonophysics 488:7–21. CrossRefGoogle Scholar
  3. Akyol N, Zhu L, Mitchell B, Sözbilir H, Kekovalı K (2006) Crustal structure and local seismicity in western Anatolia. Geophys J Int 166(3):1259–1269Google Scholar
  4. Alçiçek MC, Kazancı N, Özkul M (2005) Multiple rifting pulses and sedimentation pattern in the Çameli Basin, southwestern Anatolia, Turkey. Sediment Jeology 173:409–431Google Scholar
  5. Aldanmaz E, Köprübaşı N, Gürer ÖF, Kaymakçı N, Gourgaud A (2006) Geochemical constraints on the Cenozoic, OIB-type alkaline volcanic rocks of NW Turkey: implications for mantle sources and melting processes. Lithos 86:50–76Google Scholar
  6. Altuncu-Poyraz S (2009) Isparta Büklümü’nü oluşturan Tektonik Yapıların Sismolojik Yöntemlerle Araştırılması. İstanbul Universitesi, Fenbilimleri Enstitüsü, DoktoraTezi (in Turkish with English abstract)Google Scholar
  7. Ambraseys NN (2001) Reassessment of earthquakes 1900–1999 in the Eastern Mediterranean and Middle East. Geophys J Int 145:471–485Google Scholar
  8. Barka AA, Reilinger RE, Şaroğlu F, Şengör AMC (1995). Isparta Angle: its importance in the neotectonics of the Eastern Mediterrinean Region. In: Pişkin Ö, Ergün M,Savaşçın MY, Tarcan Ş(eds), International Earth Sciences Colloquium on the Aegean Region Proceedings 3–18Google Scholar
  9. Biryol CB, Beck SL, Zandt G, Özacar AA (2011) Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography. Geophys J Int 184(3):1037–1057Google Scholar
  10. Bocchini GM, Brüstle A, Becker D, Meier T, van Keken PE, Ruscic M, Papadopoulos GA, Rische M, Friederich W (2018) Tearing, segmentation, and backstepping of subduction in the Aegean: new insights from seismicity. Tectonophysics 734–735:96–118Google Scholar
  11. Boray A, Şaroğlu F, Emre Ö (1985) Isparta büklümünün kuzey kesiminde D-B daralma için bazı veriler. Jeoloji Mühendisliği 23:9–20 (in Turkish with English abstract)Google Scholar
  12. Bozkurt E (2001) Neotectonics of Turkey—a synthesis. Geodyn Acta 14:3–30Google Scholar
  13. Bozkurt E, Sözbilir H (2004) Tectonic evolution of the Gediz graben: field evidence for an episodic, two-stage extension in western Turkey. Geol Mag 141:63–79Google Scholar
  14. Burdick LJ, Langston CA (1977) Modelling crust-structure through the use of converted phases in teleseismic body-wave-forms. Bull Seismol Soc Am 67:677–691Google Scholar
  15. Büyükaşıkoğlu S (1980) Sismolojik verilere gore Doğu Akdeniz’in kuzeyinde ve güneydoğu Anadolu’da Avrasya-Afrika levha sınırının özellikleri. DAEB 29:58–74Google Scholar
  16. Christensen NI, Mooney WD (1995) Seismic velocity structure and composition of the continental crust: a global view. J Geophys Res 100:9761–9788Google Scholar
  17. Dilek Y, Altunkaynak Ş (2009). Geochemical and temporal evolution of Cenozoic magmatism in western Turkey: mantle response to collision, slab break-off, and lithospheric tearing in aorogenic belt, Geological Society, Special Publications, LondonGoogle Scholar
  18. Dilek Y, Rowland J (1993) Evolution of conjugate passive margin pair in Mesozoic southern Turkey. Tectonics 12(4):954–970Google Scholar
  19. Doglioni C, Agostini S, Crespi M, Innocenti F, Manetti P, Riguzzi F, Savasçin Y (2002) On the extension in western Anatolia and the Aegean Sea. J Virtual Explor 7:167–181Google Scholar
  20. Dolmaz MN, Ustaömer T, Hisarlı ZM, Orbay N (2005) Curie point depth variations to infer thermal structure of the crust at the African-Eurasian convergence zone, SW Turkey. Earth Planet Spa 57(5):373–383Google Scholar
  21. Erkül F, Helvacı C, Sözbilir H (2005) Stratigraphy and geochronology of the Early Miocene volcanic units in the Bigadiç Borate Basin, western Turkey. Turk J Earth Sci 14:227–253Google Scholar
  22. Erduran M, Çakır Ö, Tezel T, Şahin Ş, ve Alptekin Ö (2007) Anatolian surface wave evaluated at GEOFON Station ISP Isparta, Turkey. Tectonophysics 434(2007):39–54Google Scholar
  23. Faccenda M, Capitanio FA (2012) Development of mantle seismic anisotropy during subduction-induced 3-D flow. Geophys Res Lett 39:L11305. CrossRefGoogle Scholar
  24. Faccenna, C., Funiciello, F., Civetta, L., D’Antonio, M., Moroni, M., Piromallo, C., (2007). Slab disruption, mantle circulation, and the opening of the Tyrrhenian basins. In: Beccaluva L, Bianchini G, Wilson M (Eds.), Cenozoic volcanism in the Mediterranean area, 418, 153–169. doi:
  25. Flecker R, Poisson A, Robertson AHF (2005) Facies and palaeogeographic evidence for the Miocene evolution of the Isparta Angle in its regional Eastern Mediterranean context. Sediment Geol 173:277–314Google Scholar
  26. Funiciello F, Faccenna C, Giardini D, Regenauer-Lieb K (2003) Dynamics of retreating slabs: 2. insights from three-dimensional laboratory experiments. J Geophys Res 108(B4):2207. CrossRefGoogle Scholar
  27. Funiciello F, Moroni M, Piromallo C, Faccenna C, Cenedese A, Bui HA (2006) Mapping mantle flow during retreating subduction: laboratory models analyzed by feature tracking. J Geophys Res 111:B03402. CrossRefGoogle Scholar
  28. Glover CP, Robertson AHF (1998a) Role of regional extension and uplift in the Plio-Pleistocene evolution of the Aksu Basin, SW Turkey. Geol Soc London 155:365–387Google Scholar
  29. Glover CP, Robertson AHF (1998b) Neotectonic intersection of the Aegean and Cyprus tectonic arcs: extensional and strike-slip faulting in the Isparta Angle, SW Turkey. Tectonophysics 298:103–132Google Scholar
  30. Gessner K, Gallardo LA, Markwitz V, Ring U, Thomson ST (2013) What caused the denudation of the Menderes massif: review of crustal evolution, lithosphere structure, and dynamic topography in southwest Turkey. Gondwana Res 24:243–274. CrossRefGoogle Scholar
  31. Govers R, Fichtner A (2016) Signature of slab fragmentation beneath Anatolia from full waveform tomography. Earth Planet Sci Lett 450:10–19Google Scholar
  32. Govers R, Wortel MJR (2005) Lithosphere tearing at STEP faults: response to edges of subduction zones. Earth Planet Sci Lett 236:505–523Google Scholar
  33. Guillaume B, Husson L, Funiciello F, Faccenna C (2013) The dynamics of laterally variable subductions: laboratory models applied to the Hellenides. Solid Earth 4:179–200. CrossRefGoogle Scholar
  34. Halpaap F, Rondenay S, Ottemöller L (2018) Seismicity, deformation and metamorphism in the western Hellenic subduction zone-new constraints from tomography. J Geophys Res 123:3000–3026. CrossRefGoogle Scholar
  35. Hauksson E, Haase JS (1997) Three-dimensional Vp and Vp/Vs velocity models of the Los Angeles Basin and central Transverse Ranges, California. J Geophys Res 102:5423–5433Google Scholar
  36. Inoue H, Fukao Y, Tanabe K, Ogata Y (1990) Whole mantle P wave travel time tomography. Phys Earth Planet Inter 59:294–328Google Scholar
  37. Jackson JA, McKenzie D (1984) Active tectonics of the Alpine–Himalayan belt between western Turkey and Pakistan. Geophys J R Astron Soc 77:185–264Google Scholar
  38. Jolivet L, Faccenna C, Piromallo C (2009) From mantle to crust: stretching the Mediterranean. Earth Planet Sci Lett 285(1):198–209Google Scholar
  39. Jolivet L, Faccenna C, Huet B, Labrousse L, Le Pourhiet L, Lacombe O, Lecomte E, Burov E, Denèle Y, Brun J-P, Philippon M, Paul A, Salaün G, Karabulut H, Piromallo C, Monié P, Gueydan F, Okay AI, Oberhänsli R, Pourteau A, Augier R, Gadenne L, Driussi O (2013) Aegean tectonics: strain localisation, slab tearing and trench retreat. Tectonophysics 597:1–33Google Scholar
  40. Jolivet L, Menant A, Sternai P, Rabillard A, Arbaret L, Augier R, Laurent V, Beaudoin A, Greseman B, Huet B, Labrousse L, Le Pourhiet L (2015) The geological signature of a slab tear below the Aegean. Tectonophysics 659:166–182Google Scholar
  41. Jonathan RD, Biryol CB, Beck SL, Zandt G, Ward KM (2015) Shear wave velocity structure of the Anatolian Plate: anomalously slow crust in southwestern Turkey. Geophys J Int 202:261–276Google Scholar
  42. Julia J, Ammon CJ, Hermann RB, Correig AM (2000) Joint inversion of receiver functions and surface-wave dispersion observations. Geophys J Int 143:99–112Google Scholar
  43. Kalafat D (1988) Güneybatı Anadolu ve Yakın Çevresinin Depremselliği, Aktif Tektoniği. Deprem Araştırma Bülteni 63:5–98 (in Turkish)Google Scholar
  44. Kalafat D, Gürbüz C, Üçer SB (1987) Batı Türkiye’de Kabuk ve Üst Manto Yapısının Araştırılması. Deprem Araştırma Bülteni 59:43–64 (in Turkish)Google Scholar
  45. Kalyoncuoğlu ÜY, Özer MF (2003) Determination of the crustal structure beneath the Isparta seismograph station. Dokuz Eylul University Bull Sci Eng 5:11–127Google Scholar
  46. Kalyoncuoglu UY, Elitok Ö, Dolmaz MN, Anadolu NC (2011) Geophysical and geological imprints of southern Neotethyan subduction between Cyprus and the Isparta Angle, SW Turkey. J Geodyn 52:70–82Google Scholar
  47. Kahraman, M. (2008). Crustal structure of the Isparta Angle and surrounding regions using P-receiver function analysis. Boğaziçi Üniversitesi ve KRDAE Yüksek Lisans TeziGoogle Scholar
  48. Karaman, M.E. (2010). The Isparta Angle and its reletationship with Aegean-Cyprus Tectonic arcs, SW Turkey. XIX Congress of the Carpathian Balkan Geological Association Thessaloniki, Greece, September 23–26Google Scholar
  49. Kayal JR, Zhao D, Mishra OP, De R, Singh OP (2002) The 2001 Bhuj earthquake: tomographic evidence for fluids at the hypocenter and its implications for rupture nucleation. Geophys Res Lett 29(24):2152–25-4. CrossRefGoogle Scholar
  50. Kelling G, Robertson AHF, Buchem FV (2005) Cenozoic sedimentary basins of southern Turkey: an introduction. Sediment Geol 173:1–13Google Scholar
  51. Koçyiğit A (1983) Hoyran gölü (Isparta Büklümü) dolayının tektoniği [Tectonics of Lake Hoyran (Isparta Angle) area]. Bull Geol Soc Turk 26:1–10 (in Turkish with English abstract)Google Scholar
  52. Koçyiğit A, Özacar A (2003) Extensional neotectonic regime through the NE edge of the outer Isparta Angle, SW Turkey: new field and seismic data. Turk J Earth Sci 12:67–90Google Scholar
  53. Koçyiğit A (2005) Denzili graben-Horst system and the eastern limit of the west Anatolian continental extension: basin fill, structure, deformational mode, throw amount and episodic evolutionary history, SW Turkey. Geodin Acta 18:167–208Google Scholar
  54. Koçyiğit A, Deveci Ş (2007) A N-S-trending active extensional structure, the Şuhut (Afyon) graben: commencement age of the extensional neotectonic period in the Isparta Angle, SW Turkey. Turk J Earth Sci 16:391–416Google Scholar
  55. Lee, W.H.K., Lahr, J.C. (1972). HYP071: a computer program for determining hypocenter, magnitude, and first motion pattern of local earthquakes, open file report, U. S. Geological Survey, 100.Google Scholar
  56. Legendre CP, Meier T, Lebedev S, Friederich W, Viereck-Götte L (2012) A shear wave velocity model of the European upper mantle from automated inversion of seismic shear and surface waveforms. Geophys J Int 191(1):282–304Google Scholar
  57. Lei J, Zhao D (2005) P-wave tomography and origin of the Changbai intraplate volcano in Northeast Asia. Tectonophysics 397:281–295Google Scholar
  58. Moresi L, Betts PG, Miller MS, Cayley RA (2014) Dynamics of continental accretion. Nature 508:245–248. CrossRefGoogle Scholar
  59. Owens TJ, Zandt G, Taylor SR (1984) Seismic evidence for an ancient rift beneath the Cumberland Plateau, Tennessee: a detailed analysis of broadband teleseismic P waveforms. J Geophys Res 89:7783–7795Google Scholar
  60. Özalaybey S, Savage MK, Sheehan AF, Louie JN, Brune JN (1997) Shear-wave velocity structure in the northern basin and range from the combined analysis of receiver functions and surface wave. Bull Seismol Soc Am 87:183–199Google Scholar
  61. Özbakır AD, Şengör AMC, Wortel MJR, Govers R (2013) The Pliny–Strabo trench region: a large shear zone resulting from slab tearing. Earth Planet Sci Lett 375:188–195Google Scholar
  62. Papanikolaou DJ, Royden LH, (2007). Disruption of the Hellenic arc: Late Miocene extensional detachment faults and steep Pliocene-Quaternary normal faults—or what happened at Corinth? Tectonics, 26 (5)Google Scholar
  63. Paul A, Karabulut H, Mutlu AK, Salaün G (2014) A comprehensive and densely sampled map of shear-wave azimuthal anisotropy in the Aegean–Anatolia region. Earth Planet Sci Lett 389:14–22Google Scholar
  64. Pearce FD, Rondenay S, Sachpazi M, Charalampakis M, Royden LH, (2012). Seismic investigation of the transition from continental to oceanic subduction along the western Hellenic subduction zone. J Geophys Res Solid Earth, 117 (B7)Google Scholar
  65. Pe-Piper, G., Piper, D.J.W., (2006). Unique features of the Cenozoic igneous rocks of Greece. In: Dilek, Y., Pavlides, S. (Eds.), Geological Society of America. Post collisional tectonics and magmatism in the Mediterranean region and Asia, 409, 259–282. doi:
  66. Phinney RA (1964) Structure of earths crust from spectral behavior of long-period body waves. J Geophys Res 69:2997–3017Google Scholar
  67. Piper J, Gürsoy H, Tatar O, İşseven T, Koçyiğit A (2002) Palaeomagnetic evidence for the Gondwanian origin of the Taurides and rotation of the Isparta Angle, Southern Turkey. Geol J 37:317–336Google Scholar
  68. Poisson A (1977) Researches geologiques dans les Taurides Occidentales (Turquie): thesed’etat. Univ. de Paris-Sud, Orsay, p 795Google Scholar
  69. Poisson A, Wernli R, Sagular EK, Temiz H (2003a) New data concerning the age of the Aksu Thrust in the south of the Aksu valley, Isparta Angle (SW Turkey): consequences for the Antalya Basin and the Eastern Mediterranean. Geol J 38:311–327Google Scholar
  70. Poisson A, Yağmurlu F, Bozcu M, Sentürk M (2003b) New insight on the tectonic setting and evolution around the apex of the Isparta Angle (SW Turkey). Geol J 38:357–282Google Scholar
  71. Price SP, Scott B (1994) Fault-block rotations at the edge of a zone of continental extension: southwest Turkey. J Struct Geol 16:381–392Google Scholar
  72. Piromallo C, Morelli A (2003) P wave tomography of the mantle under the Alpine-Mediterranean area. J Geophys Res Solid Earth 108(B2):2065Google Scholar
  73. Piromallo C, Becker TW, Funiciello F, Faccenna C (2006) Three-dimensional instantaneous mantle flow induced by subduction. J Geophys Res 33:L08304. CrossRefGoogle Scholar
  74. Robertson AHF, Woodcock NH, (1980). Tectonic setting of the Troodos massif in the East Mediterranean. In: Panayiotou A (Ed.), Ophiolites. Proceedings of the international symposium, Cyprus, 1979. Cyprus Geological Survey Department, Ministry of Agriculture and Natural Resources, pp. 36–49Google Scholar
  75. Robertson AHF, Dixon JE (1984) Introduction: aspects of the geological evolution of the Eastern Mediterranean. Geol Soc Lond, Spec Publ 17:1–74Google Scholar
  76. Robertson AHF, Clift PD, Degnan PJ, Jones G (1991) Palaeogeographic and palaeotectonic evolution of the Eastern Mediterranean Neotethys. Palaeogeogr Palaeoclimatol Palaeoecol 87:289–343Google Scholar
  77. Robertson AHF, Poisson A, Akıncı O (2003) Developments in research concerning Mesozoic–Tertiary Tethys and neotectonics in the Isparta Angle, SW Turkey. Geol J 38:195–234Google Scholar
  78. Robertson AHF, (1993). Mesozoic–Tertiary sedimentary and tectonic evolution of Neotethyan carbonate platforms, margins and small ocean basins in the Antalya Complex of southwest Turkey. In: Frostick LE, Steel RJ (Eds.), Tectonic controls and signatures in sedimentary successions, vol. 20. Special publication of the International Association of Sedimentologists, Oxford, Blackwell, pp. 415–465Google Scholar
  79. Robertson AHF (2000) Mesozoic–Tertiary tectonic-sedimentary evolution of a south Tethyan oceanic basin and its margins in Southern Turkey. In: Bozkurt E, Winchester JA, Piper JDA (eds) Tectonics and magmatism in Turkey and the surrounding area, vol 173. Geological Society Special Publication, London, pp 97–138Google Scholar
  80. Robertson AHF (2002) Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Region. Lithos 65:1–67Google Scholar
  81. Robertson AHF (2007). Overview of tectonic settings related to the rifting and opening of Mesozoic ocean basins in the Eastern Tethys: Oman, Himalayas and Eastern Mediterranean regions, vol. 282. Geological Society, London, Special Publications, pp. 325–388Google Scholar
  82. Rotstein Y, Kafka AL (1982) Seismotectonics of the southern boundary of Anatolia, Eastern Mediterranean Region: subduction, collision, and arc jumping. J Geophys Res 87(B9):7694–7706Google Scholar
  83. Royden LH, Papanikolaou DJ, (2011). Slab segmentation and Late Cenozoic disruption of the Hellenic arc. Geochem Geophys Geosyst, 12 (3)Google Scholar
  84. Salah MK, Şahin Ş, Destici C (2007) Seismic velocity and Poisson’s ratio tomography of the crust beneath southwest Anatolia: an insight into the occurrence of large earthquakes. J Seismol 11:415–432. CrossRefGoogle Scholar
  85. Salah MK, Şahin Ş, Aydın U (2011) Seismic velocity and Poisson’s ratio tomography of the crust beneath East Anatolia. J Asian Earth Sci 40:746–761Google Scholar
  86. Salah MK, Zhao D (2003) 3-D seismic structure of Kii Peninsula in Southwest Japan: evidence for slab dehydration in the fore arc. Tectonophysics 364:191–213Google Scholar
  87. Sandvol E, Seber D, Calvert A, Barazangi M (1998) Grids earch modeling of receiver functions: implications for crustal structure in Middle East and North Africa. J Geophys Res 103:899–917Google Scholar
  88. Schildgen TF, Yıldırım C, Cosentino D, Strecker MR (2014) Linking slab break-off, Hellenic trench retreat, and uplift of the central and eastern Anatolian plateaus. Earth Sci Rev 128:147–168. CrossRefGoogle Scholar
  89. Shelly D, Beroza GC, Zhang H, Thurber C, Ide S (2006) High resolution subduction zone seismicity and velocity structure beneath Ibaraki Prefecture, Japan. J Geophy Research 111:B06311. CrossRefGoogle Scholar
  90. Sternai P, Jolivet L, Menant A, Gerya T (2014) Driving the upper plate surface deformation by slab rollback and mantle flow. Earth Planet Sci Lett 405:110–118Google Scholar
  91. Suckale J, Rondenay S, Sachpazi M, Charalampakis M, Hosa A, Royden LH (2009) High-resolution seismic imaging of the western Hellenic subduction zone using teleseismic scattered waves. Geophys J Int 178(2):775–791Google Scholar
  92. Şengör AMC, (1980). Türkiye’nin neotektoniğinin esasları, Türkiye jeoloji Kurumu, Konferans serisi 2Google Scholar
  93. Şengör AMC, Yılmaz Y, Sungurlu O, (1985). Tectonics of the Mediterranean Cimmerides: nature and evolution of the western termination of Paleotethys. In: Robertson AF, Dixon JE (eds) The geological evolution of the Eastern Mediterranean, vol 17, specpubl. Geological Society, London, pp 77–112Google Scholar
  94. Şentürk M, Yağmurlu F (2003) Acigöl ve Burdur Gölü arasındaki bölgenin jeolojik ve sismotektonik özellikleri. SDU, Fen Bilimleri Dergisi 7:11–24 (in Tukish with English abstract)Google Scholar
  95. Taymaz T, Jackson J, Mckenzie D (1991) Active tectonics of thecentral Aegean Sea. Geophys J Int 106:433–490Google Scholar
  96. Tokçaer M, Agostini S, Savaşçın MY (2005) Geotectonic setting and origin of the youngest Kula volcanics (western Anatolia), with a new emplacement model. Turkish Journal of Earth Sciences (Turkish J Earth Sci) 14:145–166Google Scholar
  97. Um J, Thurber CH (1987) A fast algorithm for two-point seismic ray tracing. Bull Seismol Soc Am 77:972–986Google Scholar
  98. Uysal S, Dumont JF, Poisson A, (1980). Western Taurus platforms. Min. Res. Explor. Inst. of Turkey (MTA) Report, No. 80, 1—13Google Scholar
  99. Üner S, Özsayın E, Kutluay A, Dirik K (2015) Poly phase tectonic evolution of the Aksu Basin, Isparta Angle (Southern Turkey). Geologica Carpatica 66(2):157–169. CrossRefGoogle Scholar
  100. Waldron JWF (1984) Evolution of carbonate platforms on a margin of the Neotethys Ocean: Isparta Angle, south-western Turkey. Eclogae Geol Helv 77:553–581Google Scholar
  101. van Hinsbergen DJJ, Kaymakci N, Spakman W, Torsvik TH (2010) Reconciling the geological history of western Turkey with plate circuits and mantle tomography. Earth Planet Sci Lett 297(3):674–686Google Scholar
  102. van Hinsbergen DJJ, Schmid SM (2012) Map-view restoration of Aegean–West Anatolian accretion and extension since the Eocene. Tectonics 31:TC5005Google Scholar
  103. Wortel MJR, Spakman W (1992) Structure and dynamic of subducted lithosphere in the Mediterranean. Proc Kon Ned Akad Wet 95:325–347Google Scholar
  104. Wortel MJR, Spakman W (2000) Subduction and slab detachment in the Mediterranean-Carpathian region. Science 290(5498):1910–1917Google Scholar
  105. Yağmurlu F (1991) Yalvaç-Yarıkkaya Neojen havzasının stratigrafisi ve depolanma ortamı [Stratigraphy and depositional setting of the Yalvaç-Yarıkkaya Neogene basin]. Bull Geol Soc Turk 34:9–19 (in Turkish with English abstract)Google Scholar
  106. Yelkenci S (2006) The crustal structure of the central Anatolia using receiver function analysis. DoktoraTezi, Boğaziçi ÜniversitesiGoogle Scholar
  107. Yılmaz Y, Genc SC, Gurer OF, Bozcu M, Yılmaz K, Karacık Z, Altunkaynak S, Elmas A (2000) When did the western Anatolian grabens begin to develop? In: Bozkurt E, Winchester JA, Piper JDA (eds) Tectonic sand magmatism in Turkey and the surrounding area, vol 173, special publications. Geological Society, London, pp 353–384Google Scholar
  108. Zhao D, Hasegawa A, Horiuchi S (1992) Tomographic imaging of P- and S-wave velocity structure beneath north eastern Japan. J Geophys Res 97:19909–19928Google Scholar
  109. Zhao D, Negishi H (1998) The 1995 Kobe earthquake: seismic image of the source zone and its implications for the rupture nucleation. J Geophys Res 103:9967–9986Google Scholar
  110. Zhao D, Ochi F, Hasegawa A, Yamamoto A (2000) Evidence for the location and cause of large crustal earthquakes in Japan. J Geophys Res 105:13579–13594Google Scholar
  111. Zhao D, Wang K, Rogers G, Peacock S (2001) Tomographic image of low P velocity anomalies above slab in northern Cascadia subduction zone. Earth Planets Space 53:285–293Google Scholar
  112. Zhao D, Mishra OP, Sanda R (2002) Influence of fluids and magma on earthquakes: seismological evidence. Phys Earth Planet Inter 132:249–267Google Scholar

Copyright information

© Saudi Society for Geosciences 2019

Authors and Affiliations

  • Şakir Şahin
    • 1
    Email author
  • Ibrahim Abubakar
    • 2
  • Mehmet Özçelik
    • 2
  • Mohamed Farouk Abdelwahed
    • 3
    • 4
  • Erdinç Oksum
    • 1
  1. 1.Department of Geophysical EngineeringSuleyman Demirel UniversityIspartaTurkey
  2. 2.Department of Geological EngineeringSuleyman Demirel UniversityIspartaTurkey
  3. 3.Geohazards Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
  4. 4.National Research Institute of Astronomy and Geophysics (NRIAG)CairoEgypt

Personalised recommendations