Advertisement

Calcareous nannofossil biostratigraphy and bio-events of the Coniacian–lower Campanian succession in the Kurdistan region, northeastern Iraq

  • Mahmoud Faris
  • Rawand B. N. Jaff
  • Sherif FaroukEmail author
S. I. Geology of Africa
  • 70 Downloads
Part of the following topical collections:
  1. New Advances and Research Results on the Geology of Africa

Abstract

The calcareous nannofossil biostratigraphy and bio-events of the Coniacian–lower Campanian succession are examined from the Dokan section, northeastern Iraq, along the southern Tethyan margin. In the Dokan section, calcareous nannofossils are affected by dissolution and silicification. The vertical stratigraphic distribution of calcareous nannoplankton allows identifying eight nannofossil zones (CC13/UC9 to CC20/UC15b). These calcareous nannofossil zones are correlated with planktonic foraminiferal biozones. Calcareous nannofossils calibrated by planktonic foraminiferal biozones suggest that (1) the Turonian–Coniacian boundary can be approximately delineated within the Marthasterites furcatus (CC13) Zone and the base of the planktonic foraminiferal Dicarinella concavata Zone, (2) the Coniacian–Santonian boundary can be delineated at the base of the nannofossil Zone CC16 and close to the base of the D. asymetrica Zone, and (3) the Santonian–Campanian boundary can be located approximately in the uppermost part of the nannofossil Zone CC17 and near the uppermost part of the planktonic foraminifera D. asymetrica Zone.

Keywords

Calcareous nannofossil Kometan Formation Kurdistan Southern Tethys Iraq 

Notes

Acknowledgements

The authors thank the editor Prof. Zakaria Hamimi (Banha University), Prof. Mohamed Boukhary (Ain Shams University), Prof. Michael Wagreich (University of Vienna), and Prof. Omar Cherif (National Authority for Remote Sensing & Space Sciences (for their constructive comments.

References

  1. Abawi TS, Hammoudi R (1997) Foraminiferal biostratigraphy of the Kometan and Gulneri Formations (Upper Cretaceous) in Kirkuk area, north of Iraq. Iraqi Geol J 30:139–146Google Scholar
  2. Al-Badrani OA (2012) Nannobiostratigraphy of the lower part of Shiranish Formation, Sinjar Anticline, NW Iraq. Iraqi Natl J Earth Sci 12:1–16Google Scholar
  3. Al-Jassim J, Al-Sheikhly SS, Al-Tememmy F (1989) Biostratigraphy of the Kometan Formation (Late Turonian-Early Campanian) in Northern Iraq. J Geol Soc Iraq 22:53–60Google Scholar
  4. Al-Sheikhly SS, Al-Jassim J, Al-Tememmy F (1989) Some new species of benthonic foraminifera from the Kometan Formation (Upper Cretaceous) of northern Iraq. J Geol Soc Iraq 22:61–67Google Scholar
  5. Al-Tememmy FMD (1986) Micropaleontological study of the Kometan Formation to determine its paleoecology. Unpublished MSc Thesis. University of Baghdad, Iraq, 174 pp.Google Scholar
  6. Aqrawi AAM, Goff JC, Horbury AD, Sadooni FN (2010) The petroleum geology of Iraq. Scientific Press, Beaconsfield, 424 pGoogle Scholar
  7. Bown PR, Young JR (1998) Techniques. In: Bown PR (ed) Calcareous Nannofossil Biostratigraphy (British Micropalaeontological Society Publications Series), Chapman and Kluwer Academic, London, 16–28CrossRefGoogle Scholar
  8. Bralower T, Leckie R, Sliter W, Thierstein H (1995) An integrated Cretaceous microfossil biostratigraphy. Sepm Spec Publ. In: Doi: Bralower1995Google Scholar
  9. Buday T (1980) The regional geology of Iraq: stratigraphy and palaeogeography. State Organisation for Minerals Library, Baghdad, 445 ppGoogle Scholar
  10. Buday T, Jassim SZ (1987) The regional geology of Iraq: tectonic, magmatism and metamorphism. Geological Survey and Mining Investigations, Baghdad, 352 ppGoogle Scholar
  11. Burnett JA (1998) Upper cretaceous. In: Bown PR (ed) Calcareous nannofossil biostratigraphy, British Micropaleontology Society Publication Series. Chapman and Hall/Kluwer Academic Press, London, pp 132–199CrossRefGoogle Scholar
  12. Burnett JA, Whitham F (1999) Correlation between the nannofossil and macrofossil biostratigraphies and the lithostratigraphy of the Upper Cretaceous of NE England. Proc Yorksh Geol Soc 52:371–381.  https://doi.org/10.1144/pygs.52.4.371 CrossRefGoogle Scholar
  13. Caron M (1985) Cretaceous planktonic foraminifera. In: Bolli HM, Saunders JB, Perch-Nielsen K (eds) Plankton stratigraphy. Cambridge University Press, Cambridge, pp 17–86Google Scholar
  14. Doeven PH (1983) Cretaceous nannofossil stratigraphy and paleoecology of the Canadian Atlantic Margin. Geol Surv Canada Bull 356:1–69Google Scholar
  15. EL-Deeb WZM (1995) Startigraphy and paleoecology of the Upper Cretaceous sediments in North Western Desert, Egypt. Egypt Pet J 4:77–94Google Scholar
  16. Farouk, S (2014) Maastrichtian carbon cycle changes and planktonic foraminiferal bioevents at Gebel Matulla, west–central Sinai, Egypt. Cretac Res 50:238–251.  https://doi.org/10.1016/j.cretres.2014.02.021 CrossRefGoogle Scholar
  17. Farouk S, and Faris M (2012) Late Cretaceous calcareous nannofossil and plank'c foraminiferal bioevents of the shallowmarine carbonate pla+orm in Mitla Pass, west central Sinai, Egypt. Cretac Res 33:50–56Google Scholar
  18. Farouk S, Ahmad F, Powell J, Marzouk A (2016) Integrated microfossil biostratigraphy, facies distribution and depositional sequences of the upper Turonian to Campanian succession in northeast Egypt and Jordan. Facies 62:8Google Scholar
  19. Farouk S, Faris M, Elamri Z (2017) Coniacian-Santonian Planktic Stratigraphy in central Tunisia. Cretac Res 78:13–26CrossRefGoogle Scholar
  20. Farouk S, Faris M, Elamri Z, Ahmad F, Wagreich M (2018) Tethyan plankton bioevents calibrated to stable isotopes across the upper Santonian - lower Campanian transition in northwestern Tunisia. Cretac Res 85:128–141CrossRefGoogle Scholar
  21. Gale AS, Hancock JM, Kennedy WJ, Petrizzo MR, Lees JA, Walaszczyk I, Wray DS (2008) An integrated study (geochemistry, stable oxygen and carbon isotopes, nannofossils, planktonic foraminifera, inoceramid bivalves, ammonites and crinoids) of the Waxahachie Dam Spillway section, North Texas: a possible boundary stratotype for the base of the Campanian Stage. Cretac Res 29:131–167.  https://doi.org/10.1016/j.cretres.2007.04.006 CrossRefGoogle Scholar
  22. Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (2012) The geologic time scale 2012. Elsevier 1176 pGoogle Scholar
  23. Huber BT, Hodell DA, Hamilton CP (1995) Middle-late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal equator-to-pole thermal gradients. Geol Soc Am Bull 107:1164–1191.  https://doi.org/10.1130/0016-7606(1995)107<1164:MLCCOT>2.3.CO;2 CrossRefGoogle Scholar
  24. Ismail AA, Boukhary MS (2001) Campanian larger foraminifera of Gebel Thelmet Formation (Stratotype), Southern Galala, Eastern Desert. Egypt Rev Paleobiol 20(1):77–90Google Scholar
  25. Jaff RBN, Wilkinson IP, Lee S, Zalasiewicz J, Lawa F, Williams M (2015) Biostratigraphy and palaeoceanography of the early Turonian–early Maastrichtian planktonic foraminifera of NE Iraq. J Micropalaeontol 34:105–138.  https://doi.org/10.1144/jmpaleo2014-020 CrossRefGoogle Scholar
  26. Jassim SZ, Goff JC (2006) Geology of Iraq. Czech Republic, Dolin, Prague and Moravian Museum, Brno, 341 pGoogle Scholar
  27. Kaddouri N (1982) Late Turonian-Early Campanian sediments in Iraq. Iraqi Geol J 15:9–18Google Scholar
  28. Karim KH, Surdashy AM (2006) Sequence stratigraphy of Upper Cretaceous Tanjero Formation in Sulaimaniya area, NE-Iraq. Kurdistan Academicians Journal 4:19–43Google Scholar
  29. Lamolda MA, Paul CRC, Peryt D, Pons JM (2014) The Global Boundary Stratotype and Section Point (GSSP) for the base of the Santonian Stage, “Cantera de Margas”, Olazagutia, northern Spain. Episodes 37:2–13Google Scholar
  30. Lees JA (2002) Calcareous nannofossil biogeography illustrates paleoclimate change in the Late Cretaceous Indian Ocean. Cret Res 23:537–634CrossRefGoogle Scholar
  31. Lees JA (2008) The calcareous nannofossil record across the Late Cretaceous Turonian/Coniacian boundary, including new data from Germany, Poland, the Czech Republic and England. Cret Res 29:40–64CrossRefGoogle Scholar
  32. Perch-Nielsen K (1979) Calcareous nannofossils from the Cretaceous between the North Sea and the Mediterranean. In Aspekte der Kreide Europas, IUGS Series A 6:223–272Google Scholar
  33. Perch-Nielsen K (1985) Mesozoic calcareous nannofossils. In: Bolli HM, Saunders JB, Perch-Nielsen K (eds) Plankton stratigraphy. Cambridge University Press, Cambridge, pp 329–426Google Scholar
  34. Percival SF (1991) Late Santonian to Early Maastrichtian calcareous nannofossil biostratighraphy and zonation of Northeast Texas. Micropaleontology. Special Publication 5:67–76Google Scholar
  35. Premoli Silva I, Sliter WV (1999) Cretaceous paleoceanography: evidence from planktic foraminiferal evolution. Geol Soc Am Spec Pap 332:301–328Google Scholar
  36. Razmjooei MJ, Thibault N, Kani A, Dinarès-Turell J, Pucéat E, Shahriari S, Radmacher W, Jamali AM, Ullmann CV, Voigt S, Cocquerez T (2018) Integrated bio- and carbon-isotope stratigraphy of the Upper Cretaceous Gurpi Formation (Iran): a new reference for the eastern Tethys and its implications for large-scale correlation of stage boundaries. Cret Res 91:312–340.  https://doi.org/10.1016/j.cretres.2018.07.002 CrossRefGoogle Scholar
  37. Sissakian VK (2000) Geological map of Iraq, sheets no.1, scale 1:1000000. State establishment of geological survey and mining. GEOSURV, Baghdad, IraqGoogle Scholar
  38. Sissingh W (1977) Biostratigraphy of Cretaceous calcareous nannoplankton. Geol Mijnb 56:37–65Google Scholar
  39. Švábenická L, Bubík M (2014) Biostratigraphical correlations of the calcareous nannofossil Marthasterites furcatus in the Bohemian Cretaceous Basin and Outer Flysch Carpathians, Czech Republic. Cret Res 51:386–398CrossRefGoogle Scholar
  40. Thibault N, Gardin S, Galbrun B (2010) Latitudinal migration of calcareous nannofossil micula murus in the maastrichtian: implications for global climate change. Geology 38:203–206.  https://doi.org/10.1130/G30326.1 CrossRefGoogle Scholar
  41. Thibault N, Husson D, Harlou R, Gardin S, Galbrun B, Huret E, Minoletti F (2012a) Astronomical calibration of upper Campanian-Maastrichtian carbon isotope events and calcareous plankton biostratigraphy in the Indian Ocean (ODP hole 762C): implication for the age of the Campanian-Maastrichtian boundary. Palaeogeogr Palaeoclimatol Palaeoecol 337–338:52–71.  https://doi.org/10.1016/j.palaeo.2012.03.027 CrossRefGoogle Scholar
  42. Thibault N, Harlou R, Schovsbo N, Schiøler P, Minoletti F, Galbrun B, Lauridsen BW, Sheldon E, Stemmerik L, Surlyk F (2012b) Upper Campanian-Maastrichtian nannofossil biostratigraphy and high-resolution carbon-isotope stratigraphy of the Danish Basin: towards a standard δ13C curve for the Boreal Realm. Cretac Res 33:72–90.  https://doi.org/10.1016/j.cretres.2011.09.001 CrossRefGoogle Scholar
  43. Thierstein HR (1976) Mesozoic calcareous nannoplankton biostratigraphy of marine sediments. Mar Micropaleontol 1:325–362.  https://doi.org/10.1016/0377-8398(76)90015-3 CrossRefGoogle Scholar
  44. Thierstein HR (1980) Selective dissolution of Late Cretaceous and Earliest Tertiary calcareous nannofossils: experimental evidence. Cret Res 1:165–176CrossRefGoogle Scholar
  45. Thierstein HR (1981) Late Cretaceous nannoplankton and the change at the Cretaceous/Tertiary boundary. SEPM Spec Publ 32:355–394Google Scholar
  46. Van Bellen RC, Dunnington HV, Wetzel R, Morton DM (2005) Lexique Stratigraphique International. Centre National de la Recherche Scientifique, Paris, p 333Google Scholar
  47. Voigt S, Gale AS, Jung C, Jenkyns HC (2012) Global correlation of Upper Campanian – Maastrichtian successions using carbon-isotope stratigraphy: development of a new Maastrichtian timescale. Newsletters Stratigr 45:25–53.  https://doi.org/10.1127/0078-0421/2012/0016 CrossRefGoogle Scholar
  48. Wagreich M (1992) Correlation of late Cretaceous calcareous nannofossil zones with ammonite zones and planktonic foraminifera: the Austrian Gosau sections. Cretac Res 13:505–516.  https://doi.org/10.1016/0195-6671(92)90014-H CrossRefGoogle Scholar
  49. Walaszczyk I, Wood CJ, Lees JA, Peryt D, Voigt S, Wiese F (2010) The Salzgitter-Salder Quarry (Lower Saxony, Germany) and Słupia Nadbrz˙ezna river cliff section (central Poland): a proposed candidate composite Global Boundary Stratotype Section and Point for the base of the Coniacian Stage (Upper Cretaceous). Acta Geol Pol 60:445–477Google Scholar
  50. Wolfgring E, Wagreich M, Dinarès-Turell J, Yilmaz IO, Böhm K (2018) Plankton biostratigraphy and magnetostratigraphy of the Santonian–Campanian boundary interval in the Mudurnu–Göynük Basin, northwestern Turkey. Cret Res 87:296–311.  https://doi.org/10.1016/j.cretres.2017.07.006 CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2019

Authors and Affiliations

  • Mahmoud Faris
    • 1
  • Rawand B. N. Jaff
    • 2
  • Sherif Farouk
    • 3
    Email author
  1. 1.Geology Department, Faculty of ScienceTanta UniversityTantaEgypt
  2. 2.Department of General Sciences, College of Education and LanguagesCharmo UniversityChamchamalIraq
  3. 3.Exploration DepartmentEgyptian Petroleum Research InstituteNasr CityEgypt

Personalised recommendations