Advertisement

Modelling transport in fractured media using the fracture continuum approach

  • Mohamed I. AhmedEmail author
  • Mohamed A. Abd-Elmegeed
  • Ahmed E. Hassan
Original Paper
  • 113 Downloads

Abstract

Two of the commonly used approaches in modelling flow and transport in fractured geological media are the discrete fracture network (DFN) approach and the stochastic continuum (SC) approach. The former approach is computationally demanding and requires large input parameters, whereas the latter approach is computationally efficient and requires fewer parameters but at the expense of not preserving fracture network details and properties. The fracture continuum (FC) approach combines the advantages of both the DFN and SC approaches. The main objective of this research is to develop a mapping technique utilizing the FC approach to preserve transport characteristics between DFN and the mapped continuum. A two-dimensional particle tracking model is developed to simulate conservative contaminant transport through DFN. The fracture network is randomly generated in a stochastic Monte Carlo framework, and the flow problem is solved using mass conservation at the fracture junctions. The transport problem is then solved via the developed particle tracking model on the DFN. The obtained transport solution is used as a reference solution. The fracture network is mapped onto a finite difference grid at four different grid cell sizes: 1 m × 1 m, 2 m × 2 m, 5 m × 5 m, and 10 m × 10 m, and the flow problem is solved via MODFLOW. The transport problem is solved on the grid using a particle tracking method. Comparisons between the transport characteristics for both approaches (DFN and FC) are performed, and the percentage error in each case is quantified. It is found that a new correction factor is needed to preserve conservative transport characteristics on the grid. The developed correction factor improves the ability of the FC technique to preserve transport on the grid for the case of conservative contaminant transport.

Keywords

Transport in fractured media Fracture continuum approach Discrete fracture network Stochastic continuum approach 

References

  1. Ahlstrom SW, Foote HP, Arnett PC, Cole CR, Serne RJ ( 1977) Multicomponent mass transport model: theory and numerical implementation (discrete parcel random walk version). Rep. BNWL 2127 for Energy Research and Development Administration. Battelle Northwest Laboratory, Richland, WashGoogle Scholar
  2. Ando K, Kostner A, Neuman SP (2003) Stochastic continuum modeling of flow and transport in crystalline rock mass: Fanay-Augeres, France, revisited. Hydrogeol J 11:521–535CrossRefGoogle Scholar
  3. Bandis SC, Makurat A, Vik G (1985) Predicted and measured hydraulic conductivity of rock joints. In: Stephansson O (ed) Proceedings of the International Symposium on Fundamentals of Rock Joints. Centek Publishers, Bjorkliden, pp 269–280Google Scholar
  4. Berkowitz B (2002) Characterizing flow and transport in fractured geological media: a review. Adv Water Resour 25(8–12):861–884.  https://doi.org/10.1016/S0309-1708(02)00042-8 CrossRefGoogle Scholar
  5. Berkowitz B, Scher H (1997) Anomalous transport in random fracture networks. Phys Rev Lett 79(20):4038–4041CrossRefGoogle Scholar
  6. Bernard S (2002) Le logiciel MODFRAC: simulation de réseaux de fractures 2D et de l'écoulement associé. [MODFRAC: a program for simulating steady-state flow in 2D random fracture networks]. Geosciences DEA report (in French). University of Poitiers, FranceGoogle Scholar
  7. Best DJ, Fisher NI (1979) Efficient simulation of the von Mises distribution. Appl Stat 28(2):152–157CrossRefGoogle Scholar
  8. Bodin J, Porel G, Delay F (2003) Simulation of solute transport in discrete fracture networks using the time domain random walk method. Earth Planet Sci Lett 208:297–304.  https://doi.org/10.1016/S0012-821X(03)00052-9 CrossRefGoogle Scholar
  9. Bodin J, Porel G, Delay F, Ubertosi F, Bernard S, de Dreuzy JR (2007) Simulation and analysis of solute transport in 2D fracture/pipe networks: the SOLFRAC program. J Contam Hydrol 89(1–2):1–28.  https://doi.org/10.1016/j.jconhyd.2006.07.005 CrossRefGoogle Scholar
  10. Bonnet E, Bour O, Odling N, Davy P, Main I, Cowie P, Berkowitz B (2001) Scaling of fracture systems in geological media. Rev Geophys 39(3):347–383.  https://doi.org/10.1029/1999RG000074 CrossRefGoogle Scholar
  11. Botros F, Hassan A, Reeves D, Pohll G (2008) On mapping fracture networks onto continuum. Water Resour Res 44(8).  https://doi.org/10.1029/2007WR006092
  12. Bour O, Davy P (1997) Connectivity of random fault networks following a power law fault length distribution. Water Resour Res 33(7):1567–1583CrossRefGoogle Scholar
  13. Bour O, Davy P (1998) On the connectivity of three-dimensional fault networks. Water Resour Res 34(10):2611–2622CrossRefGoogle Scholar
  14. Cacas MC, Ledoux E, de Marsily G, Tillie B, Barbreau B, Durand A, Feuga B, Peaudecerf P (1990) Modeling fracture flow with a stochastic discrete fracture network: calibration and validation: 1. The flow model. Water Resour Res 26(3):479–489Google Scholar
  15. Cadini F, Bertoli I, De Sanctis J, Zio E (2012) A novel particle tracking scheme for modelling contaminant transport in a dual-continua fractured medium. Water Resour Res 48.  https://doi.org/10.1029/2011WR011694 issn: 0043-1397
  16. Davy P (1993) On the frequency length distribution of the San Andreas fault system. J Geophys 98(B7):12 141–12 151CrossRefGoogle Scholar
  17. de Dreuzy JR, Davy P, Bour O (2002) Hydraulic properties of two- dimensional random fracture networks following power law distribution of length and aperture. Water Resour Res 38(12):1276.  https://doi.org/10.1029/2001WR001009 CrossRefGoogle Scholar
  18. de Dreuzy JR, Darcel C, Davy P, Bour O (2004) Influence of spatial correlation of fracture centers on the permeability of two-dimensional fracture networks following a power law length distribution. Water Resour Res 40:W01502.  https://doi.org/10.1029/2003WR002260 CrossRefGoogle Scholar
  19. de Dreuzy JR, Méheust Y, Pichot G (2012) Influence of fracture scale heterogeneity on the flow properties of three-dimensional discrete fracture networks (DFN). J Geophys Res 117:B11207.  https://doi.org/10.1029/2012JB009461 CrossRefGoogle Scholar
  20. De Josselin De Jong G (1958) Longitudinal and transverse diffusion in granular deposits. Eos Trans AGU 39(1):67–74.  https://doi.org/10.1029/TR039i001p00067 CrossRefGoogle Scholar
  21. Finsterle S (2000) Using the continuum approach to model unsaturated flow in fractured rock. Water Resour Res 36(8):2055–2066.  https://doi.org/10.1029/2000WR900122 CrossRefGoogle Scholar
  22. Fisher R (1953) Dispersion on a sphere. Proc R Soc Lond 217(A217):295–305CrossRefGoogle Scholar
  23. Follin S, Thunvik R (1994) On the use of continuum approximations for regional modeling of groundwater flow through crystalline rocks. Adv Water Resour 17(4):133–145CrossRefGoogle Scholar
  24. Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the U. S. Geological Survey modular groundwater model—user guide to modularization concepts and the ground-water flow process. U.S. Geological Survey Open-File Report 00–92Google Scholar
  25. Hassan AE, Mohamed MM (2003) On using particle tracking methods to simulate transport in single-continuum and dual continua porous media. J Hydrol 275(3–4):242–260.  https://doi.org/10.1016/S0022-1694(03)00046-5 CrossRefGoogle Scholar
  26. Hassan AE, Cushman JH, Delleur JW (1997) Monte Carlo studies of flow and transport in fractal conductivity fields: comparison with stochastic perturbation theory. Water Resour Res 33(11):2519–2534CrossRefGoogle Scholar
  27. Kalinina EA, Klise KA, McKenna SA, Hadgu T, Lowry TS (2014) Applications of fractured continuum model to enhanced geothermal system heat extraction problems. SpringerPlus 3:110.  https://doi.org/10.1186/2193-1801-3-110 CrossRefGoogle Scholar
  28. LaBolle EM, Fogg GE, Tompson AFB (1996) Random-walk simulation of transport in heterogeneous porous media: local mass-conservation problem and implementation methods. Water Resour Res 32(3):583–593.  https://doi.org/10.1029/95WR03528 CrossRefGoogle Scholar
  29. Langevin CD (2003) Stochastic ground water flow simulation with a fracture zone continuum model. Ground Water 41(5):587–601CrossRefGoogle Scholar
  30. Liu HH, Bodvarsson GS (2001) Constitutive relations for unsaturated flow in fracture networks. J Hydrol 252:116–125CrossRefGoogle Scholar
  31. Long JCS, Remer JS, Wilson CR, Witherspoon PA (1982) Porous media equivalent for networks of discontinuous fractures. Water Resour Res 18(3):645–658CrossRefGoogle Scholar
  32. Masciopinto C (1999) Particles transport in a single fracture under variable flow regimes. Adv Eng Softw 35(5):327–337CrossRefGoogle Scholar
  33. Masciopinto C, Volpe A, Palmiotta D, Cherubini C (2010) A combined PHREEQC-2/parallel fracture model for the simulation of laminar/non-laminar flow and contaminant transport with reactions. J Contam Hydrol 117(1–4):94–108.  https://doi.org/10.1016/j.jconhyd.2010.07.003 CrossRefGoogle Scholar
  34. McKenna SA, Reeves PC (2006) Fractured continuum approach to stochastic permeability modelling. In: Coburn TC, Yarus JM, Chambers RL (eds) Stochastic modelling and geo-statistics: principles, methods and case studies, vol. II, AAPG Comput. Appl. Geol. 5. AAPG, Tulsa, Okla, pp 173–186Google Scholar
  35. Mo H, Bai M, Lin D, Roegiers J-C (1998) Study of flow and trans-port in fracture network using percolation theory. Appl Math Model 22(4–5):277–291.  https://doi.org/10.1016/s0307-904x(98)10006-9 CrossRefGoogle Scholar
  36. Neuman SP (1987) Stochastic continuum representation of fracture rock permeability as an alternative to the REV and fracture network concepts. In: Farmer IW et al (eds) Rock Mechanics: Proceedings of the 28th U.S. Symposium, Tucson, Arizona. A. A. Balkema, Rotterdam, pp 533–561Google Scholar
  37. Neuman SP (1988) A proposed conceptual framework and methodology for investigating flow and transport in Swedish crystalline rocks, Arbetsrapport 88—37. SKB Swedish Nuclear Fuel and Waste Management Co., Stockholm, September 1988Google Scholar
  38. Neuman SP, Depner JS (1988) Use of variable-scale pressure test data to estimate the log hydraulic conductivity covariance and dispersivity of fractured granites near Oracle, Arizona. J Hydrol 102:475–501CrossRefGoogle Scholar
  39. Nguyen TS, Borgesson L, Chijimatsu M, Rutqvist J, Fujita T, Hernelind J, Kobayashi A, Ohnishi Y, Tanaka M, Jing L (2001) Hydro-mechanical response of a fractured granitic rock mass to excavation of a test pit—the Kamaishi Mine experiment in Japan. Int J Rock Mech Min Sci 38(1):79–94CrossRefGoogle Scholar
  40. Nicol A, Walsh JJ, Watterson J, Childs C (1996) The shapes, major axis orientations and displacement patterns of fault surfaces. J Struct Geol 18:235–248CrossRefGoogle Scholar
  41. Odling NE (1997) Scaling and connectivity of joint systems in sandstones from western Norway. J Struct Geol 19:1257–1271CrossRefGoogle Scholar
  42. Park YJ, Lee KK (1999) Analytical solutions for solute transfer characteristics at continuous fracture junctions. Water Resour Res 35:1531–1537CrossRefGoogle Scholar
  43. Park YJ, de Dreuzy JR, Lee KK, Berkowitz B (2001) Transport and intersection mixing in random fracture networks with power law length distributions. Water Resour Res 37(10):2493–2501CrossRefGoogle Scholar
  44. Pollock DW (1994) User’s guide for MODPATH/MODPATH-PLOT, version 3: a particle-tracking post-processing package for MODFLOW, the U.S. Geological Survey finite-difference ground-water flow model: U.S. Geological Survey Open-File Report 94–464, 249 pGoogle Scholar
  45. Prickett TA, Naymik TG, and Lonnquist CG (1981) A ‘random walk’ solute transport model for selected groundwater quality evaluations. Illinois State Water Survey, Bulletin 65 103:68Google Scholar
  46. Reeves DM, Benson DA, Meerschaert MM (2008) Transport of conservative solutes in simulated fracture networks: 1. Synthetic data generation. Water Resour Res 44(5):1–10.  https://doi.org/10.1029/2007WR006069 CrossRefGoogle Scholar
  47. Salamon P, Fernandez-Garcia D, Gomez-Hernandez JJ (2006) A review and numerical assessment of the random walk particle tracking method. J Contam Hydrol 87(3–4):277–305.  https://doi.org/10.1016/j.jconhyd.2006.05.005 CrossRefGoogle Scholar
  48. Scheidegger AE (1954) Statistical hydrodynamics in porous media. J Appl Phys 25(8):994–1001CrossRefGoogle Scholar
  49. Segall P, Pollard DD (1983) Geological Society of America Bulletin Joint formation in granitic rock of the Sierra Nevada Joint formation in granitic rock of the Sierra Nevada. Geol Soc Am Bull 94(5):563–575.  https://doi.org/10.1130/0016-7606(1983)94<563 CrossRefGoogle Scholar
  50. Smith L, Mase CW, Schwartz FW (1987) Estimation of fracture aperture using hydraulic and tracer tests. In: Farmer IW et al (eds) Proceedings of the 28th U.S. Symposium on Rock Mechanics. Tucson, Ariz, pp 453–463Google Scholar
  51. Snow DT (1969) Anisotropic permeability of fractured media. Water Resour Res 5(6):1273–1289CrossRefGoogle Scholar
  52. Svensson U (2001a) A continuum representation of fracture networks. Part I: method and basic test cases. J Hydrol 250(1–4):170–186.  https://doi.org/10.1016/S0022-1694(01)00435-8 CrossRefGoogle Scholar
  53. Svensson U (2001b) A continuum representation of fracture networks. Part II: application to the Äspö Hard Rock laboratory. J Hydrol 250(1–4):187–205.  https://doi.org/10.1016/S0022-1694(01)00436-X CrossRefGoogle Scholar
  54. Tsang YW (1992) Usage of “equivalent apertures” for rock fractures as derived from hydraulic and tracer tests. Water Resour Res 28(5):1451–1455CrossRefGoogle Scholar
  55. Tsang YW, Tsang CF, Hale FV, Dverstorp B (1996) Tracer transport in a stochastic continuum model of fractured media. Water Resour Res 32(10):3077–3092CrossRefGoogle Scholar
  56. Willmann M, Lanyon GW, Marschall P, Kinzelbach W (2013) A new stochastic particle-tracking approach for fractured sedimentary formations. Water Resour Res 49(1):352–359.  https://doi.org/10.1029/2012WR012191 CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2019

Authors and Affiliations

  1. 1.Irrigation and Hydraulics Department, Faculty of EngineeringCairo UniversityGizaEgypt

Personalised recommendations