Advertisement

Influence of vegetation cover on the assessment of erosion and erosive potential in the Isser marly watershed in northwestern Algeria—comparative study of RUSLE and PAP/RAC methods

  • Chikh Hamza Abdessamad Email author
  • Mohammed Habi
  • Boutkhil Morsli
Original Paper
  • 120 Downloads

Abstract

The present article aims to evaluate soil losses due to water erosion and to contribute to the knowledge about the impact of vegetation cover on the Isser watershed that is located in northwestern Algeria. For this purpose, two predictive models were used, namely the Priority Actions Program by the Regional Activity Center (PAP/RAC) model and the revised universal soil loss equation (RUSLE) model, using the geographic information system (GIS). To illustrate the level of protection in that watershed, it was decided to use two approaches for the estimation of factor C; the first one is the classical method and the second consists of calculating the normalized difference vegetation index (NDVI) during two periods (dry and wet). The map of erosive states, which was obtained from using by the PAP/RAC model, shows the areas that are potentially most vulnerable to erosion and which cover more than 60% of the total area of the basin. The results for vegetation cover (factor C) by the conventional method during the dry period present an average land loss equal to 14 (t ha−1 year−1), whereas this rate decreases to 7.9 (t ha−1 year−1) during the wet period. According to the NDVI approach, the factor C results for the dry season are 25.53 (t ha−1 year−1) with an annual land loss of up to 3 million tons. This study provided the qualitative and quantitative estimates needed for the development of the environmental management; it also helps to control the different impacts on that watershed.

Keywords

Algeria Cartography Potential erosion NDVI RUSLE PAP/RAC 

References

  1. Abdellaoui A, Lai R, Boughalem M (2014) GEMAS: une application Visual C# pour la gestion automatisée du découpage de l’espace en mailles régulières géoréférencées. Rev Geomorfologie 16:25–35Google Scholar
  2. Abdo H, Salloum J (2017) Mapping the soil loss in Marqya basin: Syria using RUSLE model in GIS and RS techniques. Environ Earth Sci 76:114CrossRefGoogle Scholar
  3. Alkharabsheh MM, Alexandridis T, Bilas G, Misopolinos N, Silleos N (2013) Impact of land cover change on soil erosion hazard in northern Jordan using remote sensing and GIS. Procedia Environ Sci 19:912–921CrossRefGoogle Scholar
  4. Andriamasimanana R (2011) Analyses de la dégradation du lac Kinkony pour la conservation du Complexe des Zones Humides Mahavavy-Kinkony, Région Boeny, Madagascar. Madagascar Conserv Dev 6Google Scholar
  5. Ard AA, Mersey JE (1999) Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed. Catena 38:109–129CrossRefGoogle Scholar
  6. Arekhi S, Niazi Y, Kalteh AM (2012) Soil erosion and sediment yield modeling using RS and GIS techniques: a case study, Iran. Arab J Geosci 5:285–296CrossRefGoogle Scholar
  7. Auerswald K, Fischer FK, Kistler M, Treisch M, Maier H, Brandhuber R (2018) Behavior of farmers in regard to erosion by water as reflected by their farming practices. Sci Total Environ 613:1–9CrossRefGoogle Scholar
  8. Azaiez N (2015) La dynamique géomorphologique actuelle dans le bassin versant de l’oued El Meleh Bou el Ajraf (Tunisie Centre-Orientale) : cartographie et essai de quantification de l’érosion hydrique Doctorat en géographie Faculté des Sciences Humaines et Sociales de Tunis. TunisieGoogle Scholar
  9. Bagherzadeh A (2014) Estimation of soil losses by USLE model using GIS at Mashhad plain, Northeast of Iran. Arab J Geosci 7:211–220CrossRefGoogle Scholar
  10. Belasri A, Lakhouili A (2016) Estimation of soil erosion risk using the universal soil loss equation (USLE) and geo-information technology in Oued El Makhazine watershed, Morocco. J Geogr Inf Syst 8:98Google Scholar
  11. Benchettouh A, Kouri L, Jebari S (2017) Spatial estimation of soil erosion risk using RUSLE/GIS techniques and practices conservation suggested for reducing soil erosion in Wadi Mina watershed (northwest, Algeria). Arab J Geosci 10:79CrossRefGoogle Scholar
  12. Blavet, D., De Noni, G., Le Bissonnais, Y., Léonard, M., Laurent, J.-Y., Asseline, J. & Roose, E. 2008. Génèse de l'érosion en milieu viticole méditerranéen à sols bruns calcaires: modalités, déterminants et indicateurs potentielsGoogle Scholar
  13. Borgogno-Mondino E, Lessio A, Tarricone L, Novello V, De Palma L (2018) A comparison between multispectral aerial and satellite imagery in precision viticulture. Precis Agric 19:195–217CrossRefGoogle Scholar
  14. Bouchetata ATB (2006) Propositions d’aménagement du sous-bassin-versant de l’oued Fergoug (Algérie) fragilisé par des épisodes de sécheresse et soumis à l’érosion hydrique. Science et changements planétaires/Sécheresse 17:415–424Google Scholar
  15. Boughalem M, Mazour M, Grecu F, Abdellaoui A, Hamimed A (2013) Evaluation par analyse multicritères de la vulnérabilité des sols a l’érosion: cas du bassin versant de l’Isser–Tlemcen–Algérie. Analele Universităţii Bucureşti:5–26Google Scholar
  16. Chalov SR, Tsyplenkov AS, Pietron J, Chalova AS, Shkolnyi DI, Jarsjö J, Maerker M (2017) Sediment transport in headwaters of a volcanic catchment—Kamchatka Peninsula case study. Front Earth Sci:1–14Google Scholar
  17. Chappell A, Webb NP, Guerschman JP, Thomas DT, Mata G, Handcock RN, Leys JF, Butler HJ (2018) Improving ground cover monitoring for wind erosion assessment using MODIS BRDF parameters. Remote Sens Environ 204:756–768CrossRefGoogle Scholar
  18. De Mello K, Randhir TO, Valente RA, Vettorazzi CA (2017) Riparian restoration for protecting water quality in tropical agricultural watersheds. Ecol Eng 108:514–524CrossRefGoogle Scholar
  19. Demmak, A. 1982. Contribution à l'étude de l'érosion et des transports solides en Algérie septentrionaleGoogle Scholar
  20. Di Stefano C, Ferro V, Porto P (2000) Length slope factors for applying the revised universal soil loss equation at basin scale in southern Italy. J Agric Eng Res 75:349–364CrossRefGoogle Scholar
  21. Duchemin M (2000) Approche géomatique pour simuler l'érosion hydrique et le transport des sédiments à l'échelle des petits bassins versants agricoles. Université du Québec, Institut national de la recherche scientifiqueGoogle Scholar
  22. Dumas J (1965) Relation entre l’érodibilité des sols et leurs caractéristiques analytiques. Cahiers Orstom: Serie Pédologie, Paris 3(4):307–333Google Scholar
  23. El Garouani A, Chen H, Lewis L, Tribak A, Abharour M (2008) cartographie de l'utilisation du sol et de l'érosion nette à partir d'images satellitaires et du sig idrisi au nord-est du maroc. Télédétection 8:193–201Google Scholar
  24. El Morabet R, Ouadrim M, Zhar E (2016) VEGETATION ET DYNAMIQUE DE SURFACE DANS LE BASSIN VERSANT AVAL D’OUED TANSIFT.«BASSIN VERSANT TALMEST-NORD ESSAOUIRA». Lucrările Seminarului Geografic" Dimitrie Cantemir", 43, 115–124Google Scholar
  25. Elaloui A, Marrakchi C, Fekri A, Maimouni S, Aradi M (2015) MISE EN PLACE D’UN MODÈLE QUALITATIF POUR LA CARTOGRAPHIE DES ZONES À RISQUE D'ÉROSION HYDRIQUE DANS LA CHAÎNE ATLASIQUE: CAS DU BASSIN VERSANT DE LA TESSAOUTE AMONT.(HAUT ATLAS CENTRAL, MAROC). European Scientific Journal, ESJ, 11Google Scholar
  26. Faleh A, Maktite A (2014) Cartographie des zones vulnérables à l’érosion hydrique à l’aide de la méthode PAP/CAR et SIG en amont du barrage Allal el fassi, moyen Atlas (Maroc). Papeles de GeografíaGoogle Scholar
  27. Ferreira V, Panagopoulos T, Cakula A, Andrade R, Arvela A (2015) Predicting soil erosion after land use changes for irrigating agriculture in a large reservoir of southern Portugal. Agric Agric Sci Procedia 4:40–49Google Scholar
  28. Foster G, Meyer L, Onstad C (1977) A runoff erosivity factor and variable slope length exponents for soil loss estimates. Trans ASAE 20:683–0687CrossRefGoogle Scholar
  29. Gadiga, B. L. & Martins, A. K. 1999. The use of revised universal soil loss equation (RUSLE) as a potential technique in mapping areas vulnerable to soil erosion in the upper Yedzaram catchment of MubiGoogle Scholar
  30. Gaubi I, Chaabani A, Mammou AB, Hamza M (2017) A GIS-based soil erosion prediction using the revised universal soil loss equation (RUSLE)(Lebna watershed, Cap Bon, Tunisia). Nat Hazards 86:219–239CrossRefGoogle Scholar
  31. Golobič M, Breskvar L (2010) Landscape planning and vulnerability assessment in the Mediterranean. Regional Activity Centre for the Priority Actions Programme, LjubljanaGoogle Scholar
  32. Gomer R (1992) Field emissions and field ionization, American Inst. of PhysicsGoogle Scholar
  33. Gomer D, Vogt T (2000) Physically based modeling of surface runoff and soil erosion under semi-arid Mediterranean conditions—the example of Oued Mina, Algeria. Soil Erosion. SpringerGoogle Scholar
  34. González MEP, Rodríguez MPG (2013) Aplicaciones de la Teledetección en degradación de suelos. Boletín de la Asociación de Geógrafos EspañolesGoogle Scholar
  35. Griesbach, J., Ruiz Sinoga, J., Giordano, A., Berney, O. & Gallart, F. 1998. Directives pour la cartographie et la mesure des processus d'erosion hydrique dans les zones cotieres mediterraneennesGoogle Scholar
  36. Habi, M., Morsli, B. & Meddi, M. 2009. Contribution à la connaissance du comportement hydrodynamique des sols argileux par l’utilisation de la simulation de pluiesGoogle Scholar
  37. Hannachi A, Fellahi Z, Rabti A, Guendouz A, Bouzerzour H (2017) Combining ability and gene action estimates for some yield attributes in durum wheat (Triticum turgidum L. var. durum). J Fundam Appl Sci 9:1519–1534CrossRefGoogle Scholar
  38. Hassan HEH, Touchart L, Faour G (2013) La sensibilité potentielle du sol à l’érosion hydrique dans l’ouest de la Bekaa au Liban. MappemondeGoogle Scholar
  39. Hili A, El Khalki Y, Gartet J (2016) Application of directives PAP/RAC and GIS for mapping forms of erosion and land movements in the watershed of Oued Sahb Laghrik (Northwest Taza, Morroco). MAPPING APPROACH. Arabian J Earth Sci 3:17–25Google Scholar
  40. Inoubli N (2016) Ruissellement et éronsion hydrique en milieu méditerranéen vertique: approche expérimentale et modélisation. Montpellier SupAgroGoogle Scholar
  41. JAIN SK, GOEL M (2002) Assessing the vulnerability to soil erosion of the Ukai dam catchments using remote sensing and GIS. Hydrol Sci J 47:31–40CrossRefGoogle Scholar
  42. Jeppesen JH, Jacobsen RH, Jørgensen RN, Halberg A, Toftegaard TS (2017) Identification of high-variation fields based on open satellite imagery. Adv Anim Biosci 8:388–393CrossRefGoogle Scholar
  43. Kaddour MK (2012) Etude de l'érosivité des pluies et de l'érodibilité des sols dans le tell oranais. Université Abdelhamid Ibn Badis de MostaganemGoogle Scholar
  44. Kaffas, K. & Hrissanthou, V. 2017. Annual sediment yield prediction by means of three soil erosion models at the basin scaleGoogle Scholar
  45. Kalman GU (1976) Patient monitoring system. Google PatentsGoogle Scholar
  46. Karaburun A (2010) Estimation of C factor for soil erosion modeling using NDVI in Buyukcekmece watershed. Ozean J Appl Sci 3:77–85Google Scholar
  47. Kheir RB, Cerdan O, Abdallah C (2006) Regional soil erosion risk mapping in Lebanon. Geomorphology 82:347–359CrossRefGoogle Scholar
  48. Khire M, Agarwadkar Y (2014) Qualitative analysis of extent and severity of desertification for semi-arid regions using remote sensing techniques. Int J Environ Sci Dev 5:238CrossRefGoogle Scholar
  49. Kim JB, Saunders P, Finn JT (2005) Rapid assessment of soil erosion in the Rio Lempa Basin, Central America, using the universal soil loss equation and geographic information systems. Environ Manag 36:872–885CrossRefGoogle Scholar
  50. Kouli M, Soupios P, Vallianatos F (2009) Soil erosion prediction using the revised universal soil loss equation (RUSLE) in a GIS framework, Chania, Northwestern Crete, Greece. Environ Geol 57:483–497CrossRefGoogle Scholar
  51. Křížová, K. & Kumhálová, J. 2017. Comparison of selected remote sensing sensors for crop yield variability estimationGoogle Scholar
  52. Kubátová E, Janeček M, Kobzová D (2009) Time variations of rainfall erosivity factor in the Czech Republic. Soil Water Res 4:131–141CrossRefGoogle Scholar
  53. Kuo KT, Sekiyama A, Mihara M (2016) Determining C factor of Universal Soil Loss Equation (USLE) based on remote sensing. Int J Environ Rural Dev 7:154–161Google Scholar
  54. Le Bissonnais, Y., Raclot, D., Andrieux, P., Moussa, R., Louchart, X. & Voltz, M. 2008. Effets d'échelle et variabilité de l'érosion entre parcelle et bassin versant en région de vignoble méditerranéen (France)Google Scholar
  55. Lee JS, Won JY (2012) Suggestion of cover-management factor equation for mountain area in RUSLE. J Korean Soc Hazard Mitigation 12:79–85CrossRefGoogle Scholar
  56. Lin W-T, Lin C-Y, Chou W-C (2006) Assessment of vegetation recovery and soil erosion at landslides caused by a catastrophic earthquake: a case study in Central Taiwan. Ecol Eng 28:79–89CrossRefGoogle Scholar
  57. Markhi A, Laftouhi N-E, Soulaimani A, Fniguire F (2015) Quantification et évaluation de l’érosion hydrique en utilisant le modèle RUSLE et déposition intégrés dans un SIG. Application dans le bassin versant n'fis dans le haut atlas de Marrakech (Maroc). Eur Sci J 11Google Scholar
  58. Mazour M (1992) Les facteurs de risque de l’érosion en nappe dans le bassin versant d’Isser, Tlemcen, Algérie. Bull Réseau Erosion:300–313Google Scholar
  59. Mazour MER (2002) Influence de la couverture végétale sur le ruissellement et l’érosion des sols sur parcelles d’érosion dans les bassins versants du Nord-ouest de l’Algérie. Bull Réseau Erosion 21:320–330Google Scholar
  60. McCool D, Brown L, Foster G, Mutchler C, Meyer L (1987) Revised slope steepness factor for the Universal Soil Loss Equation. Trans ASAE 30:1387–1396CrossRefGoogle Scholar
  61. McCool DK, Foster GR, Mutchler C, Meyer L (1989) Revised slope length factor for the Universal Soil Loss Equation. Trans ASAE 32:1571–1576CrossRefGoogle Scholar
  62. Meghraoui M, Habi M, Morsli B, Regagba M, Seladji A (2017) Mapping of soil erodibility and assessment of soil losses using the RUSLE model in the Sebaa Chioukh Mountains (northwest of Algeria). J Water Land Dev 34:205–213CrossRefGoogle Scholar
  63. Mesrar H, Sadiki A, Navas A, Faleh A, Quijano L, Chaaouan J (2015) Modélisation de l'érosion hydrique et des facteurs causaux, Cas de l'oued Sahla, Rif Central, Maroc. Z Geomorphol 59:495–514CrossRefGoogle Scholar
  64. Miller JD, Nyhan JW, Yool SR (2003) Modeling potential erosion due to the Cerro Grande fire with a GIS-based implementation of the revised universal soil loss equation. Int J Wildland Fire 12:85–100CrossRefGoogle Scholar
  65. Modeste M, Abdellatif K, Nadia M, Zhang H (2016) Cartographie Des Risques De L’erosion Hydrique Par L’equation Universelle Revisee Des Pertes En Sols, La Teledetection Et Les Sig Dans Le Bassin Versant De L’ourika (Haut Atlas, Maroc). Eur Sci J 12Google Scholar
  66. Morsli B (1996) Caractérisation, distribution et susceptibilité à l’érosion des sols de montagne-Cas des monts de Beni-Chougrane. Thèse de Magister INA El Harrach AlgerGoogle Scholar
  67. Morsli B, Habi M (2015) Effet du comportement hydrodynamique des sols argileux Sur les risques de ruissellement et d'érosion du sol: cas des sols des montagnes méditerranéennes de Beni-Chougrane-AlgérieEffect of hydrodynamic behaviour of clayey soils on the risks of runoff and soil erosion: case of soils of the Mediterranean mountains of Beni-Chougrane-Algeria. Z Geomorphol 59:355–376CrossRefGoogle Scholar
  68. Morsli B, Mazour M, Mededjel N, Hamoudi A, Roose E (2004) Influence de l ‘utilisation des terres sur les risques de ruissellement et d ‘érosion sur les versants semi-arides du nord-ouest de l ‘Algérie. Science et changements planétaires/Sécheresse 15:96–104Google Scholar
  69. Morsli B, Habi M, Meddi M (2013) Dynamique de l’érosion en zone méditerranéenne algérienne: facteurs explicatifs de variation du ruissellement et de l’érosion sous différentes occupations du sol. Rev Sci J Water Sci 26:89–105Google Scholar
  70. Mostephaoui, T., Merdas, S., Sakaa, B., Hanafi, M. & Benazzouz, M. 2013. cartographie des risques d’erosion hydrique par l’application de l’equation universelle de pertes en sol a l’aide d’un systeme d’information geographique dans le bassin versant d’el hamel (boussaada) algerieGoogle Scholar
  71. Naqvi HR, Mallick J, Devi LM, Siddiqui MA (2013) Multi-temporal annual soil loss risk mapping employing revised universal soil loss equation (RUSLE) model in Nun Nadi watershed, Uttrakhand (India). Arab J Geosci 6:4045–4056CrossRefGoogle Scholar
  72. Nelson RG (2002) Resource assessment and removal analysis for corn stover and wheat straw in the Eastern and Midwestern United States—rainfall and wind-induced soil erosion methodology. Biomass Bioenergy 22:349–363CrossRefGoogle Scholar
  73. Ouyang W, Hao F, Skidmore AK, Toxopeus A (2010) Soil erosion and sediment yield and their relationships with vegetation cover in upper stream of the Yellow River. Sci Total Environ 409:396–403CrossRefGoogle Scholar
  74. Pandey A, Chowdary V, Mal B (2007) Identification of critical erosion prone areas in the small agricultural watershed using USLE, GIS and remote sensing. Water Resour Manag 21:729–746CrossRefGoogle Scholar
  75. Patil R, Sharma S, Tignath S (2015) Remote sensing and GIS based soil erosion assessment from an agricultural watershed. Arab J Geosci 8:6967–6984CrossRefGoogle Scholar
  76. Pimentel D, Harvey C, Resosudarmo P, Sinclair K, Kurz D, Mcnair M, Crist S, Shpritz L, Fitton L, Saffouri R (1995) Environmental and economic costs of soil erosion and conservation benefits. Science-AAAS-Weekly Paper Edition 267:1117–1122Google Scholar
  77. Prasannakumar V, Vijith H, Abinod S, Geetha N (2012) Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala, India, using revised universal soil loss equation (RUSLE) and geo-information technology. Geosci Front 3:209–215CrossRefGoogle Scholar
  78. Preiti G, Romeo M, Bacchi M, Monti M (2017) Soil loss measure from Mediterranean arable cropping systems: effects of rotation and tillage system on C-factor. Soil Tillage Res 170:85–93CrossRefGoogle Scholar
  79. Rakotovao Andrianavah M (2015) Carte paléontologique de Madagascar: inventaire et mise en valeur du patrimoine paléontologique. Université de Toulouse, Université Toulouse III-Paul SabatierGoogle Scholar
  80. Ramdani M, Elkhiati N, Flower R (2009) Lakes of Africa: North of SaharaGoogle Scholar
  81. Rango A, Arnoldus H (1987) Aménagement des bassins versants. Cahiers techniques de la FAO:1–11Google Scholar
  82. Rawat KS, Mishra AK, Bhattacharyya R (2016) Soil erosion risk assessment and spatial mapping using LANDSAT-7 ETM+, RUSLE, and GIS—a case study. Arab J Geosci 9:288CrossRefGoogle Scholar
  83. Remini B, Avenard J (2000) L’envasement des barrages. Bull Réseau Erosion 20:165–171Google Scholar
  84. Renard KG (1997) Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE)Google Scholar
  85. Rendana M, Rahim SA, Idris WMR (2017) Soil erosion assessment in Tasik Chini catchment using remote sensing and GIS techniques. Sains Malaysiana 46:529–535CrossRefGoogle Scholar
  86. Rey F, Ballais J-L, Marre A, Rovéra G (2004) Rôle de la végétation dans la protection contre l'érosion hydrique de surface. Compt Rendus Géosci 336:991–998CrossRefGoogle Scholar
  87. Roose, E. 1972. Comparaison des causes de l'érosion et des principes de lutte antiérosive en région tropicale humide, tropicale sèche et méditerranéenneGoogle Scholar
  88. Roose E (1977) Use of the universal soil loss equation to predict erosion in West Africa. Soil erosion: prediction and control. Soil Conservation Society of America Ankeny, IAGoogle Scholar
  89. Roose E (1984) Causes et facteurs de l'érosion hydrique sous climat tropical: conséquences sur les méthodes antiérosives. Machinisme Agricole Tropical:4–18Google Scholar
  90. Roose E (1986) Runoff and erosion before and after clearing depending on the type of crop in western Africa. Land clearing and development in the tropics (R. Lal, ed.), 317-330Google Scholar
  91. Roose E (1994) Introduction à la gestion conservatoire de l'eau, de la biomasse et de la fertilité des sols (GCES)Google Scholar
  92. Roose E (1996) Méthodes de mesure des états de surface du sol, de la rugosité et des autres caractéristiques qui peuvent aider au diagnostic de terrain des risques de ruissellement et d’érosion, en particulier sur les versants cultivés des montagnes. Bull Réseau Erosion 16:87–97Google Scholar
  93. Roose É (2004) Évolution historique des stratégies de lutte antiérosive--Vers la gestion conservatoire de l ‘eau, de la biomasse et de la fertilité des sols (GCES). Science et changements planétaires/Sécheresse 15:9–18Google Scholar
  94. Roose E, Arabi M, Brahamia K, Chebbani R, Mazour M, Morsli B (1993) Érosion en nappe et ruissellement en montagne méditerranéenne algérienne. Cahiers Orstom, série pédologie 28:289–308Google Scholar
  95. Roose É, Sabir M, Arabi M, Morsli B, Mazour M (2012) Soixante années de recherches en coopération sur l'érosion hydrique et la lutte antiérosive au Maghreb. Physio-Géo Géographie physique et environnement:43–69Google Scholar
  96. Rouse JW Jr (1974) Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetationGoogle Scholar
  97. Sadiki, A. & Mesrar, H. 2012. Modelisation et cartographie des risques de l’erosion hydrique: cas du bassin versant de l’Oued Larbaa, Maroc. Papeles de geografía, 179–188Google Scholar
  98. Salhi C, Touaibia B, Zeroual A (2013) Les réseaux de neurones et la régression multiple en prédiction de l’érosion spécifique: cas du bassin hydrographique Algérois-Hodna-Soummam (Algérie). Hydrol Sci J 58:1573–1580CrossRefGoogle Scholar
  99. Santos JCND, Andrade EMD, Medeiros PHA, Guerreiro MJS, Palácio HADQ (2017) Land use impact on soil erosion at different scales in the Brazilian semi-arid. Rev Ciênc Agron 48:251–260CrossRefGoogle Scholar
  100. Sepuru TK, Dube T (2017) An appraisal on the progress of remote sensing applications in soil erosion mapping and monitoring. Remote Sensing Applications: Society and EnvironmentGoogle Scholar
  101. Smith S, Bullock S, Hinojosa-Corona A, Franco-Vizcaíno E, Escoto-Rodríguez M, Kretzschmar T, Farfan L, Salazar-Cesena J (2007) Soil erosion and significance for carbon fluxes in a mountainous Mediterranean-climate watershed. Ecol Appl 17:1379–1387CrossRefGoogle Scholar
  102. Sulistyo B (2016) The effect of choosing three different C factor formulae derived from NDVI on a fully raster-based erosion modelling. IOP Conference Series: Earth and Environmental Science. IOP Publishing, 012030Google Scholar
  103. Thuy HT, Lee G (2017) Soil loss vulnerability assessment in the Mekong River basin. 한국지반환경공학회 논문집, 18, 37-47CrossRefGoogle Scholar
  104. Touaibia B (2010) Problématique de l'érosion et du transport solide en Algérie septentrionale. Science et changements planétaires/Sécheresse 21:333–335Google Scholar
  105. Touaibia B, Dautrebande S, Gomer D, Aidaoui A (1999) Approche quantitative de l'érosion hydrique à différentes échelles spatiales: bassin versant de l'Oued Mina. Hydrol Sci J 44:973–986CrossRefGoogle Scholar
  106. Touaibia B, Gomer D, Aidaoui A (2000) Estimation de l’index d’érosion de Wischmeier dans les micro bassins expérimentaux de l’Oued Mina en Algérie du Nord. Bull Réseau Erosion:478–484Google Scholar
  107. van der Knijff J, Jones R, Montanarella L (1999) Soil erosion risk assessment in Italy, JRC, European CommissionGoogle Scholar
  108. van Remortel RD, Hamilton ME, Hickey RJ (2001) Estimating the LS factor for RUSLE through iterative slope length processing of digital elevation data within Arclnfo grid. Cartography 30:27–35CrossRefGoogle Scholar
  109. Vijith H, Suma M, Rekha V, Shiju C, Rejith P (2012) An assessment of soil erosion probability and erosion rate in a tropical mountainous watershed using remote sensing and GIS. Arab J Geosci 5:797–805CrossRefGoogle Scholar
  110. Wall G, Coote D, Pringle E, Shelton I (2002) RUSLE-CAN-Équation universelle révisée des pertes de sol pour application au Canada: Manuel pour l’évaluation des pertes de sol causées par l’érosion hydrique au Canada. Direction générale de la recherche, Agriculture et Agroalimentaire Canada, No de contribution, 02–91Google Scholar
  111. Wang G, Gertner G, Fang S, Anderson AB (2003) Mapping multiple variables for predicting soil loss by geostatistical methods with TM images and a slope map. Photogramm Eng Remote Sens 69:889–898CrossRefGoogle Scholar
  112. Wang Y, Zhang J, Zhang Z, Jia L (2016) Impact of tillage erosion on water erosion in a hilly landscape. Sci Total Environ 551:522–532CrossRefGoogle Scholar
  113. Williams JR (1995) The EPIC model. In: Singh VP (ed) Computer models of watershed hydrology, chapter 25. Water Resources Publications, Highlands RanchGoogle Scholar
  114. Winchell M, Jackson S, Wadley A, Srinivasan R (2008) Extension and validation of a geographic information system-based method for calculating the revised universal soil loss equation length-slope factor for erosion risk assessments in large watersheds. J Soil Water Conserv 63:105–111CrossRefGoogle Scholar
  115. Wischmeier WH, Smith DD (1958) Rainfall energy and its relationship to soil loss. Eos, Transactions American Geophysical Union 39:285–291CrossRefGoogle Scholar
  116. Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses-a guide to conservation planning. Predicting rainfall erosion losses-a guide to conservation planningGoogle Scholar
  117. Yao W, Li-Sheng H, Yun-Long C (2017) Scale effects of eroded sediment transport in Wujiang River Basin, Guizhou Province, China. J Groundwater Sci Eng 5:182–192Google Scholar
  118. Yjjou M, Bouabid R, el Hmaidi A, Essahlaoui A (2012) Caractérisation topographique et climatique via le SIG du bassin versant du haut Oum Er-Rbia en amont du barrage El Hansali (SW du Moyen Atlas, Maroc). J Hydrocarbons Mines Environ Res 3:104–109Google Scholar
  119. Zekri N, Clerc JP (2002) Étude statistique et dynamique de la propagation d'épidémies dans un réseau de petit monde. Compt Rendus Phys 3:741–747CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2019

Authors and Affiliations

  • Chikh Hamza Abdessamad 
    • 1
    Email author
  • Mohammed Habi
    • 1
  • Boutkhil Morsli
    • 2
  1. 1.Department of Hydraulic, Faculty of TechnologyUniversity Abou Bekr Belkaid of TlemcenTlemcenAlgeria
  2. 2.National Institute for Forest ResearchTlemcenAlgeria

Personalised recommendations