Advertisement

A new slip safety risk scale of natural stones with statistical K-means clustering analysis

  • Gültekin ÇoşkunEmail author
Original Paper
  • 56 Downloads

Abstract

In this study, the classification of the risk of new safety slip of the pedestrians in natural stone floor covering when barefoot and walking with shoes. A total of 15 types of natural stones were categorized according to and subjected to their geological, mineralogical-petrographic, chemical, physical, and mechanical characterization tests. Coefficients of friction (COF) have been found by the natural stone formed four surface processing techniques (SPTs), three environmental conditions, ramp and pendulum test device, and DIN EN 51097, DIN EN 51130, and TS EN 14231 standards. The new slip safety risk scale is determined by the K-means method considering the wet (WE), dry (DE), and lubricated (LE) environmental conditions and the applied SPT of the parameters affecting the COF values of natural stones. With the data obtained from the tests, the slip safety risk scale of the COF of natural stones was determined by the statistical K-means clustering method. According to statistical results, natural stones have been classified according to three slip test depending on their COF values.

Keywords

Natural stones COF Floor surfaces K-means clustering Slip safety risk scale 

Notes

Funding information

This study was supported by TÜBİTAK-1002 Project (Project No: 108M624). We would like to thank for their contributions.

References

  1. Bowman R (2004) Practical aspects of slip resistance of stone. Retrieved 2018, 29 May 2018, fromhttp://www.discoveringstone.com
  2. Bowman R (2010) Slip resistance testing—zones of uncertainty. Bol Soc Esp Ceram Vidrio 49(4):227–238Google Scholar
  3. British Standards Institution (BSI) (2002) Describes the method of conducting floor pendulum testing. BSI, London Standard No. BS 7976-2: 2002Google Scholar
  4. Cham R, Redfern M (2002) Heel contact dynamics during slip events on level and inclined surfaces. Saf Sci 40:559–576.  https://doi.org/10.1016/S0925-7535(01)00059-5 CrossRefGoogle Scholar
  5. Chang WR, Matz S (2001) The slip resistance of common footwear materials measured with two slipmeters. Appl Ergon 32:540–558.  https://doi.org/10.1016/S0003-6870(01)00031-X CrossRefGoogle Scholar
  6. Chang WR, Grönqvist R, Leclercq S, Brungraber RJ, Mattke U, Strandberg L, Courtney TK (2001) The role of friction in the measurement of slipperiness. Part 2: survey of friction measurement devices. Ergonomics 44:1233–1261.  https://doi.org/10.1080/00140130110085583.
  7. Çoşkun G, Sarıışık G (2017a) Determination and evaluation of slip risk of floor coverings used in public institutions. International Conference on Occupational Health and Safety Symposium, Proceedings Book (pp. 336–347, Adana, Turkey. (in Turkish)Google Scholar
  8. Çoşkun G, Sarıışık G (2017b) Doğal Taşların Sürtünme Katsayılarını (COF) Belirleyerek Yüzey Özelliklerinin Kayma Güvenlik Risk Analizi. Cumhuriyet Üniversitesi Fen-Edebiyat Fakültesi 38(2):219Google Scholar
  9. Çoşkun G, Sarıışık G, Sarıışık A (2016) Classification of parameters affecting slip safety of limestones. Cogent Engineering 3(1):1217821.  https://doi.org/10.1080/23311916.2016.1217821. CrossRefGoogle Scholar
  10. Çoşkun G, Sarıışık G, Sarıışık A (2017) Slip safety risk analysis of surface properties using the coefficients of friction of rocks. Int J Occup Saf Ergon:1–15.  https://doi.org/10.1080/10803548.2017.1395594
  11. German Institute for Standardization (DIN) (1992) Prüfung von bodenbelägen; bestimmung der rutschhemmenden eigenschaft; naßbelastete barfußbereiche; begehungsverfahren—schiefe ebene [Testing of floor coverings; determination of the anti-slip properties; wet-loaded barefoot areas; walking method-ramp test]. DIN, Berlin Standard No. DIN 51097:1992. GermanGoogle Scholar
  12. German Institute for Standardization (DIN) (1993) Sicherheits schutz und berufsschuhe; rutschhemmung, mittelfußschutz, schnittschutzeinlage und thermische beanspruchung; sicherheitstechnische anforderungen, prüfung [Safety, protective and occupational footwear; slip resistance, metatarsal protecion, protective insert and thermal behaviour; safety requirements, testing]. Berlin: DIN. Standard No. DIN 4843-100: 1993. GermanGoogle Scholar
  13. German Institute for Standardization (DIN) (2000) Prüfung von kautschuk und elastomeren—härteprüfung nach shore A und shore D [Shore A and shore D hardness testing of rubber, testing]. Berlin: DIN. Standard No. DIN 53505: 2000. German.Google Scholar
  14. German Institute for Standardization (DIN) (2014) Prüfung von bodenbelägen - bestimmung der rutschhemmenden eigenschaft - arbeitsräume und arbeitsbereiche mit rutschgefahr—begehungsverfahren—schiefe ebene [Testing of floor coverings; determination of the anti-slip properties; workrooms and fields of activities with slip danger; walking method; ramp test]. Berlin: DIN. Standard No. DIN 51130: 2014. GermanGoogle Scholar
  15. Grönqvist R (1995) Mechanisms of friction and assessment of slip resistance of new and used footwear soles on contaminated floors. Ergonomics 38:224–241.  https://doi.org/10.1080/00140139508925100 CrossRefGoogle Scholar
  16. Grönqvist R, Hirvonen M, Tohv A (1999) Evaluation of three portable flor slipperiness testers. Int J Ind Ergon 25:85–95.  https://doi.org/10.1016/S0169-8141(98)00101-2. CrossRefGoogle Scholar
  17. Hair JFJ, Black WC, Babin BJ, Anderson RE (2010) Multivariate data analysis Seventh Edition. Prentice Hall, Upper Saddle RiverGoogle Scholar
  18. Hanson J, Redfern M, Mazumdar M (1999) Predicting slips and falls considering required and available friction. Ergonomics 42:1619–1633.  https://doi.org/10.1080/001401399184712 CrossRefGoogle Scholar
  19. Kim IJ (1996) Microscopic investigation to analyze the slip resistance of shoes. Proceedings of the Fourth Pan Pacific Conference on Occupational Ergonomics. Taiwan. 68–73Google Scholar
  20. Kim IJ (2015) Wear observation of shoe surfaces: application for slip and fall safety assessments. Tribol Trans 58:407–417.  https://doi.org/10.1080/10402004.2014.980593 CrossRefGoogle Scholar
  21. Kim IJ (2016) A study on wear development of floor surfaces: impact on pedestrian walk way slip-resistance performance. Tribol Int 95:316–323.  https://doi.org/10.1016/j.triboint.2015.11.039 CrossRefGoogle Scholar
  22. Kulaksız S (2007) Doğal taş (mermer) madencilik ve işleme teknolojileri [Natural stone (marble) mining and processing technologies]. TMMOB Chamber of Mining Engineers, Ankara 595. TurkishGoogle Scholar
  23. Leclercq S (1999) The prevention of slipping accidents: a review and discussion of work related to the methodology of measuring slip resistance. Saf Sci 31:95–125.  https://doi.org/10.1016/S0925-7535(98)00064-2 CrossRefGoogle Scholar
  24. Li KW, Chen CJ (2004) The effect of shoe soling tread groove width on the coefficient of friction with different sole materials, floors, and contaminants. Appl Ergon 35:499–507.  https://doi.org/10.1016/j.apergo.2004.06.010 CrossRefGoogle Scholar
  25. Manning DP, Jones C, Rowland FJ, Roff M (1998) The surface roughness of a rubber soling material determines the coefficient of friction on water-lubricated surfaces. J Saf Res 29:275–283.  https://doi.org/10.1016/S0022-4375(98)00053-X CrossRefGoogle Scholar
  26. Marpet M (2002) Improved characterization of tribometric test results. Saf Sci 40:705–714.  https://doi.org/10.1016/S0925-7535(01)00068-6 CrossRefGoogle Scholar
  27. Powers CM, Kulig K, Flynn J, Brault JR (1999) Repeatability and bias of two walkway safety tribometers. J Test Eval 27:368–374.  https://doi.org/10.1520/JTE12164J
  28. Ricotti R, Delucchi M, Cerisola GA (2009) Comparison of results from portable and laboratory floor slipperiness testers. Int J Ind Ergon 39:353–357.  https://doi.org/10.1016/j.ergon.2008.07.004. CrossRefGoogle Scholar
  29. Rowland FJ, Jones C, Manning DP (1996) Surface roughness of footwear soling materials: relevance to slip resistance. J Test Eval 24:368–376.  https://doi.org/10.1520/JTE11459J
  30. Sarıışık G (2007) Technical characteristics of some Turkish natural stones with calcium carbonate root and their usage fields on structure and restoration (pp. 20–66) (Masters thesis). A.K.U., Institute of Sciences, Department of Mine Engineering, AfyonGoogle Scholar
  31. Sarıışık A (2009) Safety analysis of slipping barefoot on marble covered wet areas. Saf Sci 47:417–1428.  https://doi.org/10.1016/j.ssci.2009.03.006 CrossRefGoogle Scholar
  32. Sarıışık A, Sagular EK (1998) Effects on geo-mechanical parameters of the petrographic-pertological characteristics of rocks used as construction and facing rock. In 4. National Rock Mechanics Symposium, Proceedings Book (pp. 33–47, Zonguldak, Turkey (in Turkish)Google Scholar
  33. Sarıışık A, Sarıışık G (2010a) Quality control of Turkish calcareous natural stone using the merkont system. J Test Eval 38(5):1–13.  https://doi.org/10.1520/JTE102774 CrossRefGoogle Scholar
  34. Sarıışık A, Sarıışık G (2010b) Analysis of the parameters affecting the slip angle of surface-processed natural stones. Min J 49:17–30 (in Turkish)Google Scholar
  35. Sarıışık G, Sarıışık A, Koch R, Knoblauch U (2008) The analysis of permeability feature of some limestones on utilization quality. Proceedings of Turkey VI. Marble and Natural Stone Symposium (p. 335). (in Turkish)Google Scholar
  36. Sarıışık A, Akdaş H, Sarıışık G, Çoşkun G (2011) Slip safety analysis of differently surface processed dimension marbles. J Test Eval 39(5):1–10.  https://doi.org/10.1520/JTE103702 CrossRefGoogle Scholar
  37. Sariisik A, Sariisik G, Akdaş H (2012) Slip analysis of surface processed limestones. Proc Inst Civ Eng Constr Mater 165:279–296.  https://doi.org/10.1680/coma.10.00062 CrossRefGoogle Scholar
  38. Şentürk A, Gündüz L, Tosun YI, Sarıışık A (1996) Mermer teknolojisi [Marble technology]. Tugra Press., Isparta, p 250 TurkishGoogle Scholar
  39. Strandberg L, Lanshammar H (1981) The dynamics of slipping accidents. J Occup Accid 3:153–162.  https://doi.org/10.1016/0376-6349(81)90009-2 CrossRefGoogle Scholar
  40. Turkish Standards Institute (TSI) (2004a) Doğal taş deney metotları—knoop sertliğinin tayini [Natural stone test methods—determination of knoop hardness]. TSI, Ankara Standard No. TS EN 14205: 2004. TurkishGoogle Scholar
  41. Turkish Standards Institute (TSI) (2004b) Doğal taşlar deney metotları—pandül deney donanımıyla kayma direncinin tayini [Natural stone test methods—determination of the slip resistance by means of the pendulum tester]. TSI, Ankara Standard No. TS EN 14231: 2004. TurkishGoogle Scholar
  42. Turkish Standards Institute (TSI) (2007) Doğal taşlar deney yöntemleri—tek eksenli basınç dayanımı tayini [Natural stone test methods—determination of compressive strength]. TSI, Ankara Standard No. TS EN 1926: 2007. TurkishGoogle Scholar
  43. Turkish Standards Institute (TSI) (2009) Doğal yapı taşları—İnceleme ve laboratuvar deney yöntemleri [Natural stone test methods—determination of frost resistance]. TSI, Ankara Standard No. TS 699: 2009. TurkishGoogle Scholar
  44. Turkish Standards Institute (TSI) (2010) Doğal taşlar deney metotları—gerçek yoğunluk, görünür yoğunluk, toplam ve açık gözeneklilik tayini [Natural stone test methods—determination of real density and apparent density, and of total and open porosity]. TSI, Ankara Standard No. TS EN 1936: 2010. TurkishGoogle Scholar
  45. Turkish Standards Institute (TSI) (2013) Doğal taşlar deney metotları—aşınma direnci tayini [Natural stone test methods—determination of abrasion resistance]. TSI, Ankara Standard No. TS EN 1341 Appendix-C: 2013. TurkishGoogle Scholar
  46. Turkish Standards Institute (TSI) (2014a) Doğal taşlar deney yöntemleri—atmosfer basıncında su emme tayini [Natural stone test methods—determination of water absorption at atmospheric pressure]. TSI, Ankara Standard No. TS EN 13755: 2014. TurkishGoogle Scholar
  47. Turkish Standards Institute (TSI) (2014b) Doğal taşlar deney yöntemleri—sabit moment altında eğilme dayanımının tayini [Natural stone test methods—determination of flexural strength under constant moment]. TSI, Ankara Standard No. TS EN 13161: 2014. TurkishGoogle Scholar
  48. Vattani A (2011) K-means requires exponentially many iterations even in the plane. Discrete Comput Geom 45(4):596–616CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2019

Authors and Affiliations

  1. 1.Department of Natural Building Stones -Vocational School of SivasCumhuriyet UniversitySivasTurkey

Personalised recommendations