Advertisement

Improving a stochastic multi-site generation model of daily rainfall using discrete wavelet de-noising: a case study to a semi-arid region

  • Sarah Hellassa
  • Doudja Souag-Gamane
Original Paper
  • 9 Downloads

Abstract

This paper presents a combined model of wavelet transform analysis and multi-site stochastic generation model of daily rainfall data. The followed methodology demonstrates the feasibility of the discrete wavelets transform for de-noising process as part of hydrological data processing. The classical two-part stochastic model has been investigated at the basin scale to simulate multi-site daily rainfall time series, which is among the most useful information used in water resources management. However, despite the importance of such information, as far as we know, no previous contribution has been conducted to tackle the issue for Algerian watershed. Such requirement has spurred the authors to investigate the performance of a multi-site stochastic process in this study area. Therefore, to develop this investigation, a modified stochastic model based on Wilks approach was adopted. According to the literature, the adopted model led to good results in solving the adverse effect of random noise problem. Overall, the validation of the statistical characteristics of the obtained generated series demonstrates that the model performs very well with noisy data as well as with the de-noised ones. Furthermore, the use of the pre-treated daily rainfall data in the stochastic multi-site model has contributed to improve substantially the spatial dependency results for the semi-arid study area.

Keywords

Multi-site stochastic generator Daily rainfall De-noising process Wavelet analysis Spatial correlation Algeria 

References

  1. Addison PS (2002) The illustrated wavelet transform handbook: introductory theory and applications in science, engineering, medicine and finance. CRC PressGoogle Scholar
  2. Bárdossy A (1998) Generating precipitation time series using simulated annealing. Water Resour Res 34:1737–1744.  https://doi.org/10.1029/98WR00981 CrossRefGoogle Scholar
  3. Beecham S, Rashid M, Chowdhury RK (2014) Statistical downscaling of multi-site daily rainfall in a South Australian catchment using a generalized linear model. Int J Climatol 34:3654–3670.  https://doi.org/10.1002/joc.3933 CrossRefGoogle Scholar
  4. Brissette FP, Khalili M, Leconte R (2007) Efficient stochastic generation of multi-site synthetic precipitation data. J Hydrol 345:121–133.  https://doi.org/10.1016/j.jhydrol.2007.06.035 CrossRefGoogle Scholar
  5. Buishand TA (1977) Stochastic modelling of daily rainfall sequences. VeenmanGoogle Scholar
  6. Burrus CS, Guo H (1998) Introduction to wavelets and wavelet transforms: a primer. Prentice HallGoogle Scholar
  7. Caskey JE (1963) A Markov chain model for the probability of precipitation occurrence in intervals of various length. Mon Weather Rev 91:298–301.  https://doi.org/10.1175/1520-0493(1963)091<0298:AMCMFT>2.3.CO;2 CrossRefGoogle Scholar
  8. Chandler RE, Wheater HS (2002) Analysis of rainfall variability using generalized linear models: a case study from the west of Ireland. Water Resour Res 38:1192–10-11.  https://doi.org/10.1029/2001WR000906 CrossRefGoogle Scholar
  9. Chen J, Brissette FP, Zhang XJ (2014) A multi-site stochastic weather generator for daily precipitation and temperature. T ASABE. 57(5):1375–13Google Scholar
  10. Chin EH (1977) Modeling daily precipitation occurrence process with Markov chain. Water Resour Res 13:949–956.  https://doi.org/10.1029/WR013i006p00949 CrossRefGoogle Scholar
  11. Choi C, Ko B (2014) Stochastic simulation of daily precipitation: a copula approach. J Korean Data Inf Sci Soc 25:245–254.  https://doi.org/10.7465/jkdi.2014.25.1.245 CrossRefGoogle Scholar
  12. Chou C (2011) A threshold based wavelet denoising method for hydrological data modelling. Water Resour Manag 25:1809–1830.  https://doi.org/10.1007/s11269-011-9776-3 CrossRefGoogle Scholar
  13. Cong R-G, Brady M (2012) The interdependence between rainfall and temperature: copula analyses. In: Sci. World J. https://www.hindawi.com/journals/tswj/2012/405675/. Accessed 5 Feb 2018
  14. Daubechies I (1992) Ten Lectures on Wavelets. SIAMGoogle Scholar
  15. Donoho DL (1995) De-noising by soft-thresholding. IEEE Trans Inf Theory 41:613–627.  https://doi.org/10.1109/18.382009 CrossRefGoogle Scholar
  16. Donoho DL, Johnstone JM (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika 81:425–455.  https://doi.org/10.1093/biomet/81.3.425 CrossRefGoogle Scholar
  17. Eagleson PS (1978) Climate, soil, and vegetation: 2. The distribution of annual precipitation derived from observed storm sequences. Water Resour Res 14:713–721.  https://doi.org/10.1029/WR014i005p00713 CrossRefGoogle Scholar
  18. Feyerherm AM, Bark LD (1967) Goodness of fit of a Markov chain model for sequences of wet and dry days. J Appl Meteorol 6:770–773.  https://doi.org/10.1175/1520-0450(1967)006<0770:GOFOAM>2.0.CO;2 CrossRefGoogle Scholar
  19. Foufoula-Georgiou E, Lettenmaier DP (1987) A Markov renewal model for rainfall occurrences. Water Resour Res 23:875–884.  https://doi.org/10.1029/WR023i005p00875 CrossRefGoogle Scholar
  20. Fugal DL (2009) Conceptual wavelets in digital signal processing: an in-depth, practical approach for the non-mathematician. Space & Signals Technical PubGoogle Scholar
  21. Gabriel KR, Neumann J (1962) A Markov chain model for daily rainfall occurrence at Tel Aviv. Q J R Meteorol Soc 88:90–95.  https://doi.org/10.1002/qj.49708837511 CrossRefGoogle Scholar
  22. Garbutt DJ, Stern RD, Dennett MD, Elston J (1981) A comparison of the rainfall climate of eleven places in West Africa using a two-part model for daily rainfall. Arch Meteorol Geophys Bioclimatol Ser B 29:137–155.  https://doi.org/10.1007/BF02278197 CrossRefGoogle Scholar
  23. Gates P, Tong H (1976) On Markov chain modeling to some weather data. J Appl Meteorol 15:1145–1151.  https://doi.org/10.1175/1520-0450(1976)015<1145:OMCMTS>2.0.CO;2 CrossRefGoogle Scholar
  24. Green JR (1964) A model for rainfall occurrence. J R Stat Soc Ser B Methodol 26:345–353Google Scholar
  25. Gregory JM, Wigley TML, Jones PD (1993) Application of Markov models to area-average daily precipitation series and interannual variability in seasonal totals. Clim Dyn 8:299–310.  https://doi.org/10.1007/BF00209669 CrossRefGoogle Scholar
  26. Haan CT, Allen DM, Street JO (1976) A Markov chain model of daily rainfall. Water Resour Res 12:443–449.  https://doi.org/10.1029/WR012i003p00443 CrossRefGoogle Scholar
  27. Haddad PA, Akansu AN (2012) Multiresolution signal decomposition: transforms, subbands, and wavelets. Academic PressGoogle Scholar
  28. Harrold TI, Sharma A, Sheather SJ (2003a) A nonparametric model for stochastic generation of daily rainfall occurrence. Water Resour Res 39:1300.  https://doi.org/10.1029/2003WR002182 CrossRefGoogle Scholar
  29. Harrold TI, Sharma A, Sheather SJ (2003b) A nonparametric model for stochastic generation of daily rainfall amounts. Water Resour Res 39:1343.  https://doi.org/10.1029/2003WR002570 CrossRefGoogle Scholar
  30. Hopkins JW, Robillard P (1964) Some statistics of daily rainfall occurrence for the Canadian prairie provinces. J Appl Meteorol 3:600–602.  https://doi.org/10.1175/1520-0450(1964)003<0600:SSODRO>2.0.CO;2 CrossRefGoogle Scholar
  31. Hutchinson MF (1990) A point rainfall model based on a three-state continuous Markov occurrence process. J Hydrol 114:125–148.  https://doi.org/10.1016/0022-1694(90)90078-C CrossRefGoogle Scholar
  32. Katz RW (1977) Precipitation as a chain-dependent process. J Appl Meteorol 16:671–676.  https://doi.org/10.1175/1520-0450(1977)016<0671:PAACDP>2.0.CO;2 CrossRefGoogle Scholar
  33. Katz RW, Parlange MB (1998) Overdispersion phenomenon in stochastic modeling of precipitation. J Clim 11:591–601.  https://doi.org/10.1175/1520-0442(1998)011<0591:OPISMO>2.0.CO;2 CrossRefGoogle Scholar
  34. Keller DE, Fischer AM, Frei C, Liniger MA, Appenzeller C, Knutti R (2015) Implementation and validation of a Wilks-type multi-site daily precipitation generator over a typical Alpine river catchment. Hydrol Earth Syst Sci 19:2163–2177.  https://doi.org/10.5194/hess-19-2163-2015 CrossRefGoogle Scholar
  35. Kenabatho PK, McIntyre NR, Chandler RE, Wheater HS (2012) Stochastic simulation of rainfall in the semi-arid Limpopo basin, Botswana. Int J Climatol 32:1113–1127.  https://doi.org/10.1002/joc.2323 CrossRefGoogle Scholar
  36. Kigobe M, McIntyre N, Wheater H, Chandler R (2011) Multi-site stochastic modelling of daily rainfall in Uganda. Hydrol Sci J 56:17–33.  https://doi.org/10.1080/02626667.2010.536548 CrossRefGoogle Scholar
  37. Labat D, Ababou R, Mangin A (2000) Rainfall–runoff relations for karstic springs. Part II: continuous wavelet and discrete orthogonal multiresolution analyses. J Hydrol 238:149–178.  https://doi.org/10.1016/S0022-1694(00)00322-X CrossRefGoogle Scholar
  38. Lall U, Rajagopalan B, Tarboton DG (1996) A nonparametric wet/dry spell model for resampling daily precipitation. Water Resour Res 32:2803–2823.  https://doi.org/10.1029/96WR00565 CrossRefGoogle Scholar
  39. Lang M, Guo H, Odegard JE, Burrus CS, Wells RO (1996) Noise reduction using an undecimated discrete wavelet transform. IEEE Signal Process Lett 3:10–12.  https://doi.org/10.1109/97.475823 CrossRefGoogle Scholar
  40. Li Z, Yang D, Hong Y, Zhang J, Qi Y (2014) Characterizing spatiotemporal variations of hourly rainfall by gauge and radar in the mountainous Three Gorges Region. J Appl Meteorol Climatol 53:873–889.  https://doi.org/10.1175/JAMC-D-13-0277.1 CrossRefGoogle Scholar
  41. Lowry WP, Guthrle D (1968) Markov chains of order greater than one. Mon Weather Rev 96:798–801.  https://doi.org/10.1175/1520-0493(1968)096<0798:MCOOGT>2.0.CO;2 CrossRefGoogle Scholar
  42. Mallat S (2008) A wavelet tour of signal processing: the sparse way. Academic PressGoogle Scholar
  43. Mehrotra R, Sharma A (2007a) A semi-parametric model for stochastic generation of multi-site daily rainfall exhibiting low-frequency variability. J Hydrol 335:180–193.  https://doi.org/10.1016/j.jhydrol.2006.11.011 CrossRefGoogle Scholar
  44. Mehrotra R, Sharma A (2007b) Preserving low-frequency variability in generated daily rainfall sequences. J Hydrol 345:102–120.  https://doi.org/10.1016/j.jhydrol.2007.08.003 CrossRefGoogle Scholar
  45. Mehrotra R, Srikanthan R, Sharma A (2006) A comparison of three stochastic multi-site precipitation occurrence generators. J Hydrol 331:280–292.  https://doi.org/10.1016/j.jhydrol.2006.05.016 CrossRefGoogle Scholar
  46. Mhanna M, Bauwens W (2012) A stochastic space-time model for the generation of daily rainfall in the Gaza Strip. Int J Climatol 32:1098–1112.  https://doi.org/10.1002/joc.2305 CrossRefGoogle Scholar
  47. Misiti M, Misiti Y, Oppenheim G, Poggi J-M (2013) Wavelets and their applications. John Wiley & SonsGoogle Scholar
  48. Moon S-E, Ryoo S-B, Kwon J-G (1994) A Markov chain model for daily precipitation occurrence in South Korea. Int J Climatol 14:1009–1016.  https://doi.org/10.1002/joc.3370140906 CrossRefGoogle Scholar
  49. Nalley D, Adamowski J, Khalil B (2012) Using discrete wavelet transforms to analyze trends in streamflow and precipitation in Quebec and Ontario (1954–2008). J Hydrol 475:204–228.  https://doi.org/10.1016/j.jhydrol.2012.09.049 CrossRefGoogle Scholar
  50. Neyman J, Scott EL (1958) Statistical approach to problems of cosmology. J R Stat Soc Ser B Methodol 20:1–43Google Scholar
  51. Nourani V, Baghanam AH, Rahimi AY, Nejad FH (2014a) Evaluation of wavelet-based de-noising approach in hydrological models linked to artificial neural networks. In: Computational intelligence techniques in earth and environmental sciences. Springer, Dordrecht, pp 209–241CrossRefGoogle Scholar
  52. Nourani V, Hosseini Baghanam A, Adamowski J, Kisi O (2014b) Applications of hybrid wavelet–artificial intelligence models in hydrology: a review. J Hydrol 514:358–377.  https://doi.org/10.1016/j.jhydrol.2014.03.057 CrossRefGoogle Scholar
  53. Nourani V, Partoviyan A (2018) Hybrid denoising-jittering data pre-processing approach to enhance multi-step-ahead rainfall–runoff modeling. Stoch Environ Res Risk Assess 32:545–562.  https://doi.org/10.1007/s00477-017-1400-5 CrossRefGoogle Scholar
  54. Parlange MB, Katz RW (2000) An extended version of the Richardson model for simulating daily weather variables. J Appl Meteorol 39:610–622.  https://doi.org/10.1175/1520-0450-39.5.610 CrossRefGoogle Scholar
  55. Qian B, Corte-Real J, Xu H (2002) Multisite stochastic weather models for impact studies. Int J Climatol 22:1377–1397.  https://doi.org/10.1002/joc.808 CrossRefGoogle Scholar
  56. Rahman MS (1999) A stochastic simulated first-order Markov chain model for daily rainfall at Barind, Bangladesh. J Interdiscip Math 2:7–32.  https://doi.org/10.1080/09720502.1999.10700255 CrossRefGoogle Scholar
  57. Rajagopalan B, Lall U (1999) A k-nearest-neighbor simulator for daily precipitation and other weather variables. Water Resour Res 35:3089–3101.  https://doi.org/10.1029/1999WR900028 CrossRefGoogle Scholar
  58. Rajagopalan B, Lall U, Tarboton David G (1996) Nonhomogeneous Markov model for daily precipitation. J Hydrol Eng 1:33–40.  https://doi.org/10.1061/(ASCE)1084-0699(1996)1:1(33) CrossRefGoogle Scholar
  59. Richardson CW (1981) Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resour Res 17:182–190.  https://doi.org/10.1029/WR017i001p00182 CrossRefGoogle Scholar
  60. Rodriguez-Iturbe I, Cox DR, S FR, Isham V (1987a) Some models for rainfall based on stochastic point processes. Proc R Soc Lond A 410:269–288.  https://doi.org/10.1098/rspa.1987.0039 CrossRefGoogle Scholar
  61. Rodriguez-Iturbe I, Cox DR, S FR, Isham V (1988) A point process model for rainfall: further developments. Proc R Soc Lond A 417:283–298.  https://doi.org/10.1098/rspa.1988.0061 CrossRefGoogle Scholar
  62. Rodriguez-Iturbe I, Power BFD, Valdes JB (1987b) Rectangular pulses point process models for rainfall: analysis of empirical data. J Geophys Res Space Phys 92:9645–9656CrossRefGoogle Scholar
  63. Rolda’n J, Woolhiser DA (1982) Stochastic daily precipitation models: 1. A comparison of occurrence processes. Water Resour Res 18:1451–1459.  https://doi.org/10.1029/WR018i005p01451 CrossRefGoogle Scholar
  64. Sang Y-F, Liu C, Wang Z, Wen J, Shang L (2014) Energy-based wavelet de-noising of hydrologic time series. PLoS One 9:e110733.  https://doi.org/10.1371/journal.pone.0110733 CrossRefGoogle Scholar
  65. Sang Y-F, Wang D, Wu J-C, Zhu QP, Wang L (2009) The relation between periods’ identification and noises in hydrologic series data. J Hydrol 368:165–177.  https://doi.org/10.1016/j.jhydrol.2009.01.042 CrossRefGoogle Scholar
  66. Sang Y-F, Wang D, Wu J-C, Zhu QP, Wang L (2013) Improved continuous wavelet analysis of variation in the dominant period of hydrological time series. Hydrol Sci J 58:118–132.  https://doi.org/10.1080/02626667.2012.742194 CrossRefGoogle Scholar
  67. Sang Y-F, Wang D, Wu J-C, Zhu QP, Wang L (2011) Wavelet-based analysis on the complexity of hydrologic series data under multi-temporal scales. Entropy 13:195–210.  https://doi.org/10.3390/e13010195 CrossRefGoogle Scholar
  68. Santos CAG, Kisi O, da Silva RM, Zounemat-Kermani M (2018) Wavelet-based variability on streamflow at 40-year timescale in the Black Sea region of Turkey. Arab J Geosci 11:169.  https://doi.org/10.1007/s12517-018-3514-6 CrossRefGoogle Scholar
  69. Santos CAG, da Silva GBL (2014) Daily streamflow forecasting using a wavelet transform and artificial neural network hybrid models. Hydrol Sci J 59:312–324.  https://doi.org/10.1080/02626667.2013.800944 CrossRefGoogle Scholar
  70. Schaefli B, Maraun D, Holschneider M (2007) What drives high flow events in the Swiss Alps? Recent developments in wavelet spectral analysis and their application to hydrology. Adv Water Resour 30:2511–2525.  https://doi.org/10.1016/j.advwatres.2007.06.004 CrossRefGoogle Scholar
  71. Segond M-L, Onof C, Wheater HS (2006) Spatial–temporal disaggregation of daily rainfall from a generalized linear model. J Hydrol 331:674–689.  https://doi.org/10.1016/j.jhydrol.2006.06.019 CrossRefGoogle Scholar
  72. Selvalingam S, Miura M (1978) Stochastic modeling of monthly and daily rainfall sequences. JAWRA J Am Water Resour Assoc 14:1105–1120.  https://doi.org/10.1111/j.1752-1688.1978.tb02250.x
  73. Semenov MA, Barrow EM (1997) Use of a stochastic weather generator in the development of climate change scenarios. Clim Chang 35:397–414.  https://doi.org/10.1023/A:1005342632279 CrossRefGoogle Scholar
  74. Sharma A, Lall U (1999) A nonparametric approach for daily rainfall simulation. Math Comput Simul 48:361–371.  https://doi.org/10.1016/S0378-4754(99)00016-6 CrossRefGoogle Scholar
  75. (Sri) Srikanthan R, Pegram GGS (2009) A nested multisite daily rainfall stochastic generation model. J Hydrol 371:142–153.  https://doi.org/10.1016/j.jhydrol.2009.03.025
  76. Stehlı́k J, Bárdossy A (2002) Multivariate stochastic downscaling model for generating daily precipitation series based on atmospheric circulation. J Hydrol 256:120–141.  https://doi.org/10.1016/S0022-1694(01)00529-7 CrossRefGoogle Scholar
  77. Stern RD (1980) The calculation of probability distributions for models of daily precipitation. Arch Für Meteorol Geophys Bioklimatol Ser B 28:137–147.  https://doi.org/10.1007/BF02243841 CrossRefGoogle Scholar
  78. Stern RD, Coe R (1984) A model fitting analysis of daily rainfall data. J R Stat Soc Ser Gen 147:1–34.  https://doi.org/10.2307/2981736 CrossRefGoogle Scholar
  79. Thompson CS, Thomson PJ, Zheng X (2007) Fitting a multisite daily rainfall model to New Zealand data. J Hydrol 340:25–39.  https://doi.org/10.1016/j.jhydrol.2007.03.020
  80. Todorovic P, Woolhiser DA (1975) A stochastic model of n-day precipitation. J Appl Meteorol 14:17–24.  https://doi.org/10.1175/1520-0450(1975)014<0017:ASMODP>2.0.CO;2 CrossRefGoogle Scholar
  81. Tsakiris G (1988) Stochastic modeling of rainfall occurrences in continuous-timeGoogle Scholar
  82. Vallam P, Qin XS (2016) Multi-site rainfall simulation at tropical regions: a comparison of three types of generators. Meteorol Appl 23:425–437.  https://doi.org/10.1002/met.1567 CrossRefGoogle Scholar
  83. Walker JS (2008) A primer on wavelets and their scientific applications, Second Edition. CRC PressGoogle Scholar
  84. Waymire E, Gupta VK (1981) The mathematical structure of rainfall representations: 1. A review of the stochastic rainfall models. Water Resour Res 17:1261–1272.  https://doi.org/10.1029/WR017i005p01261 CrossRefGoogle Scholar
  85. Weeks M (2011) Digital signal processing using MATLAB & wavelets. Jones & Bartlett PublishersGoogle Scholar
  86. Weiss LL (1964) Sequences of wet or dry days described by a Markov chain probability model. Mon Weather Rev 92:169–176.  https://doi.org/10.1175/1520-0493(1964)092<0169:SOWODD>2.3.CO;2 CrossRefGoogle Scholar
  87. Wilks DS (1999a) Interannual variability and extreme-value characteristics of several stochastic daily precipitation models. Agric For Meteorol 93:153–169.  https://doi.org/10.1016/S0168-1923(98)00125-7 CrossRefGoogle Scholar
  88. Wilks DS (1998) Multisite generalization of a daily stochastic precipitation generation model. J Hydrol 210:178–191.  https://doi.org/10.1016/S0022-1694(98)00186-3 CrossRefGoogle Scholar
  89. Wilks DS (1999b) Multisite downscaling of daily precipitation with a stochastic weather generator. Clim Res 11:125–136.  https://doi.org/10.3354/cr011125 CrossRefGoogle Scholar
  90. Wilks DS (2006) Statistical methods in the atmospheric sciences. Academic PressGoogle Scholar
  91. Wilks DS (1989) Conditioning stochastic daily precipitation models on total monthly precipitation. Water Resour Res 25:1429–1439.  https://doi.org/10.1029/WR025i006p01429 CrossRefGoogle Scholar
  92. Wilks DS, Wilby RL (1999) The weather generation game: a review of stochastic weather models. Prog Phys Geogr Earth Environ 23:329–357.  https://doi.org/10.1177/030913339902300302 CrossRefGoogle Scholar
  93. Woolhiser DA, Pegram GGS (1979) Maximum likelihood estimation of Fourier coefficients to describe seasonal variations of parameters in stochastic daily precipitation models. J Appl Meteorol 18:34–42.  https://doi.org/10.1175/1520-0450(1979)018<0034:MLEOFC>2.0.CO;2 CrossRefGoogle Scholar
  94. Yang C, Chandler RE, Isham VS, Wheater HS (2005) Spatial-temporal rainfall simulation using generalized linear models. Water Resour Res 41:W11415.  https://doi.org/10.1029/2004WR003739 CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2019

Authors and Affiliations

  1. 1.LEGHYD LaboratoryUniversity of Science and Technology Houari BoumedieneBab EzzouarAlgeria

Personalised recommendations