Advertisement

Campanian–Maastrichtian unconformities and rudist diagenesis, Aruma Formation, central Saudi Arabia

  • Sacit ÖzerEmail author
  • Abdelbaset S. El-Sorogy
  • Mohammad E. Al-Dabbagh
  • Khaled Al-Kahtany
Original Paper
  • 34 Downloads

Abstract

The Upper Cretaceous Aruma Formation is widely distributed in central Saudi Arabia and consists of three members, from base to top, the Khanasir Limestone Member, the Hajajah Limestone Member, and the Lina Shale Member. It disconfomably overlies the Cenomanian Wasia Formation (middle Turonian, the “Wasia-Aruma break”). Two unconformities were recorded within and at the top of the Aruma Formation: (a) “the lower Campanian unconformity” between the Khanasir Limestone Member and the Hajajah Limestone Member and (b) “the pre-Cenozoic unconformity” between the Lina Shale Member and the Paleogene Umm er Radhuma Formation. The comparison between these unconformities and those recorded on the Arabian Plate was emphasized. A lenticular rudist biostrome in the uppermost part of the Khanasir Limestone Member consists mainly of the radiolitids and sparse canaliculated rudists in life position. However, rudists are entirely fragmented in the lower limestone and are very rare in the upper limestone of the Hajajah Limestone Member. Loose right valves of radiolitids from the Campanian Khanasir Member have underwent diagenetic alterations, such as fragmentation and compaction, micritization, bioerosion, and micritic calcite cement, which indicates marine diagenetic stage, while very limited silicification, dolomitization, and dissolution suggest the meteoric diagenetic environments with arid climates. Isopachus and equant calcite cement and neomorphism may be showed the fresh pharetic zone related with subaerial unconformities.

Keywords

Aruma Formation Upper Cretaceous Unconformities Diagenesis Rudist bivalves Saudi Arabia 

Notes

Acknowledgments

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at the King Saud University for funding this work through research group no. (RG-1438-060). We thank Dr. Hatice Yılmaz (Dokuz Eylul University, İzmir) for XRD analysis and interpretations; Winton Cornell (The University of Tulsa) for comments on XRD analysis; Ibukun Bode-Omoleye (Oklahoma State University) for English corrections of the text; and Dr. Cüneyt Akal and Dr. Toygar Akar from the Dokuz Eylul University, İzmir, for formatting the figures. The authors would like to thank Dr. Robert W. Scott (The University of Tulsa) for his constructive suggestions and English corrections of the text and to two anonymous reviewers that improved the quality of the study. We are also grateful to Dr. Bruno Granier (Université de Bretagne Occidentale, Brest) for his valuable comments on the text.

References

  1. Al-Aasm IS, Veizer J (1986a) Diagenetic stabilization of aragonite and low-Mg calcite; I, stable isotops in rudists. J Sediment Petrol 56:138–152CrossRefGoogle Scholar
  2. Al-Aasm IS, Veizer J (1986b) Diagenetic stabilization of aragonite and low-Mg calcite; II, trace elements in rudists. J Sediment Petrol 56:763–770CrossRefGoogle Scholar
  3. Al-Kahtany K, El-Sorogy AS, Youssef M (2016) Stratigraphy and depositional environments of the Upper Cretaceous Aruma Formation, Central Saudi Arabia. Arab J Geosci 9:330–339CrossRefGoogle Scholar
  4. Al-Mohammad RAH (2012) Depositional environment and petrophysical properties study of Mishrif Formation in Tuba Oilfield, Southern Iraq. J Basrah Res (Sci) 38(1):25–50Google Scholar
  5. Alsharhan AS (1995) Facies variation, diagenesis, and exploration potential of the Cretaceous rudist-bearing carbonates of the Arabian Gulf. AAPG Bull 79(4):531–550Google Scholar
  6. Alsharhan AS, Nairn AEM (1990) A review of the Cretaceous formations in the Arabian Peninsula and Gulf: part II. Mid Cretaceous (Wasia Group) stratigraphy and paleogeography. J Pet Geol 11:89–112CrossRefGoogle Scholar
  7. Alsharhan AS, Sadd JL (2000) Stylolites in Lower Cretaceous carbonate reservoirs, UAE. In: Alsharhan AS, Scott RW (eds) Middle East models of Jurassic/Cretaceous carbonate systems. SEPM Special Publication 69:179–200Google Scholar
  8. Aqrawi AAM, Tehni GA, Sherwani GH, Kareem BMA (1998) Mid-Cretaceous rudist-bearing carbonates of the Mishrif Formation; an important reservoir sequence in the Mesopotamian Basin, Iraq. J Pet Geol 1(1):57–82CrossRefGoogle Scholar
  9. Asghari M, Adabi MH (2014) Diagenesis and geochemistry of the Sarvak Formation in Ahvaz oil field-Iran. Geochem J 1(1):1–7Google Scholar
  10. Bandel K, Salameh E (2013) Geologic development of Jordan. Evolution of its rocks and life. The University of Jordan Press, Amman 278 pGoogle Scholar
  11. Bathurst RGC (1975) Carbonate sediments and their diagenesis. Elsevier Science, New York 658 pGoogle Scholar
  12. Benyoucef M, Meıster C, Mebarkı K, Läng É, Adacı M, Cavin L, Malti FZ, Zaoui D, Cherif A, Bensalah M (2016) Évolution lithostratigraphique, paléoenvironnementale et séquentielle du Cénomanien-Turonien inférieur dans la région du Guir (Ouest algérien). Carnets Geol 16(9):271–295CrossRefGoogle Scholar
  13. Braun M, Hirsch F (1994) Mid Cretaceous (Albian-Cenomanian) carbonate platforms in Israel. Cuad Geol ibér 18:59–81Google Scholar
  14. Cestari R, Sartorio D (1995) Rudists and facies of the periadriatic domain. Agip, Rome 207 pGoogle Scholar
  15. Chikhi-Aouimeur F (2010) L’Algerié ẚ travers son Patrimoine paléontologique. Les Rudistes. SarlBaosem, Arzew 269pGoogle Scholar
  16. Choquette PW, Pray LC (1970) Geologic nomenclature and classification of porosity in sedimentary carbonates. AAPG Bull 54:207–250Google Scholar
  17. Cobban WA, Skelton PW, Kennedy WJ (1991) Occurrence of the rudistid Durania cornupastoris (Des Moulins, 1826) in the Upper Cretaceous Greenhorn Limestone in Colorado. U S Geol Surv Bull 1985:D1–D8Google Scholar
  18. Du Y, Zhang J, Zheng S, Xin J, Chen J, Li YZ (2015) The rudist buildup depositional model, reservoir architecture and development strategy of the cretaceous Sarvak formation of Southwest Iran. Petroleum 1:16–26CrossRefGoogle Scholar
  19. El-Asa’ad, GMA (1977) A contribution to the geology of the Aruma Formation in Central Saudi Arabia. Ph.D. thesis, Mansoura University, Egypt (Unpublished).Google Scholar
  20. El-Asa’ad, GMA (1983a) Lithostratigraphy of the Aruma Formation in Central Saudi Arabia. Proceeding of the first Jordanian Geological Conference, Special Publication 1:72–86Google Scholar
  21. El-Asa’ad, GMA (1983b) Bio- and chronostratigraphy of the Aruma Formation in Central Saudi Arabia. Proceeding of the first Jordanian Geological Conference, Special Publication 1:87–111Google Scholar
  22. El-Asa’ad GMA (1987) Rudist faunas from the Late Cretaceous of Central Saudi Arabia. J Coll Sci King Saud Univ 18(1):53–71Google Scholar
  23. El-Asa’ad GMA (1991) Late Cretaceous Ammonites from Central Saudi Arabia. J King Saud Univ 3:135–158Google Scholar
  24. El-Hedeny MM, El-Sabbagh AM (2005) Eoradiolites liratus (Bivalvia, Radiolitidae) from the Upper Cenomanian Galala Formation at Saint Paul, Eastern Desert (Egypt). Cretac Res 26:551–566CrossRefGoogle Scholar
  25. El-Nakhal HA, El-Naggar ZR (1994) Review of the biostratigraphy of the Aruma Group (Upper Cretaceous) in the Arabian Peninsula and surrounding regions. Cretac Res 15(4):401–416CrossRefGoogle Scholar
  26. El-Sorogy AS, Ismail A, Youssef M, Nour H (2016) Facies development and paleoenvironment of the Hajajah Limestone Member, Aruma Formation, central Saudi Arabia. J Afr Earth Sci 124:355–364CrossRefGoogle Scholar
  27. Enos P (1986) Diagenesis of mid-Cretaceous rudist reefs, Valles Platform, Mexico. In: Schroeder JH, Purser BH (eds) Reef diagenesis. Springer, Berlin, pp 160–185CrossRefGoogle Scholar
  28. Enos P, Wahap A, Goldstein R (2015) Diagenesis and porosity evolution associated with unconformities in the mid-Cretaceous El Abra Limestone, Mexico. Kansas Interdisciplinary Carbonate Consortium Prospectus, pp 140–143.Google Scholar
  29. Flügel E (2010) Microfacies of carbonate rocks: analysis, interpretation and application. Springer-Verlag, Berlin, p 929CrossRefGoogle Scholar
  30. Gameil M, El-Sorogy AS (2015) Gastropods from the Campanian–Maastrichtian Aruma Formation, Central Saudi Arabia. J Afr Earth Sci 103:128–139CrossRefGoogle Scholar
  31. Ghanem H, Kuss J (2013) Stratigraphic control of the Aptiane Early Turonian sequences of the Levant Platform, Coastal Range, northwest Syria. GeoArabia 18(4):85–132Google Scholar
  32. Hajıkazemi E, Al-Aasm IS, Coniglio M (2010) Subaerial exposure and meteoric diagenesis of the Cenomanian-Turonian Upper Sarvak Formation, southwestern Iran. In: Leturmy P, Robın C (eds) Tectonic and stratigraphic evolution of Zagros and Makran during the Mesozoic-Senozoic, vol 330. Geological Society, London, special publication, pp 253–272Google Scholar
  33. Halley RB (1985) Setting and geologic summary of the Lower Cretaceous, Sunniland field, Sothern Florida. In: Roehl PO, Choquette PW (eds) Carbonate petroleum reservoirs. Springer-Verlag, New York, pp 443–454CrossRefGoogle Scholar
  34. Hardenbol J, Thierry J, Farley MB, Jacquin T, de Graciansky PC, Vail PR (1998) Cretaceous biochronostratigraphy. In: de Graciansky PC, Hardenbol J, Jacquin T, Vail PR (eds) Mesozoic and Cenozoic sequence stratigraphy of European basins, vol 60. Society for Sedimentary Geology (SEPM), Tulsa, Special Publication, pp 3–13CrossRefGoogle Scholar
  35. Harris PM, Frost, SH, Seglie, GA, Schneidermann N (1984) Regional unconformities and depositional cycles, Cretaceous Arabian Peninsula. In: Schlee JS (ed). Interregional unconformities and hydrocarbon accumulation. AAPG Memoire 36, pp 67–80Google Scholar
  36. Holdaway HK, Clayton CJ (1982) Preservation of shell microstructure in silicified brachiopods from the Upper Cretaceous Wilmington Sands of Devon. Geol Mag 119:371–382CrossRefGoogle Scholar
  37. Jacka AD (1974) Replacement of fossils by length-slow chalcedony and associated dolomitization. J Sediment Petrol 44:421–427Google Scholar
  38. James NP, Choquette PW (1984) Diagenesis 9. Limestones—the meteoric diagenetic environment. Geosci Can 1(1):161–194Google Scholar
  39. Jie Z, Limin Z, Fuliang LV, Haiying H, Dongxu W, Tianxiang D (2016) Rudists reservoir characterization in Middle Cretaceous Mishrif Formation of H Oilfield, Iraq. Extented abstract AAPG/SEG International Conference & Exhibition, Melbourne, Australia, September 13–16, 2015, AAPG/SEG © 2016.Google Scholar
  40. Jordan CF, Connally RC, Vest HA (1985) Middle Cretaceous carbonate of Mishrif Formation, Fateh Field, offshore Dubai, UAE. In: Roehl PO, Choquette PW (eds) Carbonate petroleum reservoirs. Springer-Verlag, New York, pp 425–442CrossRefGoogle Scholar
  41. Keene JB, Kastner M (1974) Clays and formation of deep-sea chert. Nature 249:754–755CrossRefGoogle Scholar
  42. Khazaei AR, Skelton PW, Yazdi M (2010) Maastrichtian rudist fauna from Tarbar Formation (Zagros Region, SW Iran): preliminary observations. In: Özer S, Sari B, Skelton PW (eds) Jurassic-Cretaceous rudists and carbonate platforms. Turk J Earth Sci 19(6):703–719Google Scholar
  43. Knauth LP (1979) A model for the origin of chert in limestone. Geology 7:274–277CrossRefGoogle Scholar
  44. Lawrence MJF (1994) Conceptual model for early diagenetic chert and dolomite, Amuri Limestone Group, north-eastern South Island, New Zealand. Sedimentology 41:479–498CrossRefGoogle Scholar
  45. Longman MW (1980) Carbonate diagenesis textures from near surface diagenetic environments. Am Assoc Pet Geol Bull 64:461–487Google Scholar
  46. Loucks RG, Lucia FJ, Waite LE (2013) Origin and description of the micropore network within the Lower Cretaceous Stuart City trend tight-gas limestone reservoir in Pawnee Field in South Texas. Gulf Coast Assoc Geol Soc 2:29–41Google Scholar
  47. M’Rabet A, Negra MH, Purser BH, Sassi S, Ben Ayed N (1986) Micrite diagenesis in senonian rudist build-ups in Central Tunisia. Reef Diagenesis, pp 210–223Google Scholar
  48. Maliva RG, Sıever R (1988) Mechanism and controls of silification of fossils in limestone. J Geol 96(4):387–398CrossRefGoogle Scholar
  49. Mansour ASM (2004) Diagenesis of Upper Cretaceous rudist bivalves, Abu Roash Area, Egypt: a petrographic study. Geol Croat 57(1):55–66Google Scholar
  50. Moore CH (1997) Carbonate diagenesis and porosity. In: Developments in sedimentology, vol 46. Elsevier Science, Amsterdam 317 pGoogle Scholar
  51. Morris NJ, Skelton PW (1995) Late Campanian–Maastrichtian rudists from the United Arab Emirates—Oman border region. Bulletin of the British Museum (natural history). Geol Ser 51:277–305Google Scholar
  52. Moss S, Tucker ME (1995) Diagenesis of Barremian–Aptian platform carbonates (the Urgonian Limestone Formation of SE France): near-surface and shallow-burial diagenesis. Sedimentology 42:853–874CrossRefGoogle Scholar
  53. Mutti M (1995) Porosity development and diagenesis in the Orfento Supersequence and its bounding unconformities (Upper Cretaceous, Montagna Della Maiella, Italy). In: Budd DA, Saller AH, Harris PM (eds) Carbonate reservoirs, unconformities and porosity in carbonate strata, vol 63. The American Association of Petroleum Geologists, Tulsa, Memoire, pp 141–158Google Scholar
  54. Negra MH (1984) Paleoenvironnement et diagenese des facies recifaux à Rudistes au Jebel el Kebar, Tunisie central. These de 3 Cycle. Univ. Paris-Sud, OrsayGoogle Scholar
  55. Negra MH, Purser BH, M'Rabet A (2009) Sedimentation, diagenesis and syntectonic erosion of Upper Cretaceous rudist mounds in Central Tunisia. In: Monty CLV, Bosence DWJ, Brıdges PH, Pratt BR (eds) Carbonate mudmounds: their origin and evolution. Blackwell Science, Hoboken, pp 401–417Google Scholar
  56. Nizami AR, Sheikh RA (2009) Microfacies analysis and diagenetic settings of the Middle Jurassic Samana Suk Formation, Sheikh Budin Hill Section, Marwat Range, Trans Indus Ranges, Pakistan. Geol Bull Punjab Univ 44:69–84Google Scholar
  57. Özcan E (2007) Morphometric analysis of the genus Omphalocyclus from the Late Cretaceous of Turkey: new data on its stratigraphic distribution in Mediterranean Tethys and description of two new taxa. Cretac Res 28:621–641CrossRefGoogle Scholar
  58. Özer S (2010) Dictyoptychus Douvillé: taxonomic revision, phylogeny and biogeography. In: Özer S, Sar B, Skelton PW (eds) Jurassic-Cretaceous rudists and carbonate platforms. Turkish Journal of Earth Sciences 19(5):583–612Google Scholar
  59. Özer S, Ahmad F (2016) Caprinula and Sauvagesia rudist faunas (Bivalvia) from the Cenomanian of NW Jordan. Stratigraphy and taxonomy. Cretac Res 58:141–159CrossRefGoogle Scholar
  60. Özer S, El-Sorogy AS (2017) New record of Durania cornupastoris (rudist, Bivalvia) from the Campanian of the Aruma Formation, Riyadh (Saudi Arabia). Description, geographic and stratigraphic remarks. J Afr Earth Sci 129:380–389CrossRefGoogle Scholar
  61. Özer S, Fayez A (2015) Cenomanian-Turonian rudist (bivalvia) lithosomes from NW of Jordan. J Afr Earth Sci 107:119–133CrossRefGoogle Scholar
  62. Özer S, Karim KH, Sadiq DM (2013) First determination of rudists (bivalvia) from NE Iraq: systematic palaeontology and palaeobiogeography. Bull Mineral Res Explor 147:31–55Google Scholar
  63. Pascual-Cebrıan E, Götz S, Bover-Arnal T, Skelton PW, Gılı E, Salasand R, Stınnesbeck W (2016) Calcite/aragonite ratio fluctuations in Aptian rudist bivalves: correlation with changing temperatures. Geology 44(2):135–138CrossRefGoogle Scholar
  64. Philip J (1982) Paléobiogéographie des rudistes et géodynamiques des marges mésogéennes au Crétacé supérieur. Bull Soc Géol Fr 24(7):995–1006CrossRefGoogle Scholar
  65. Philip J (1985) Sur les relations des marges téthysiennes au Campanien et au Maestrichtien déduits de la distribution des rudistes. Bull Soc Géol Fr 1(8):723–731Google Scholar
  66. Philip J, Platel JP (1995) Stratigraphy and rudist biozonation of the Campanian and Maastrichtian of Eastern Oman. Rev Mex Cienc Geol 12(2):257–266 (for 1995)Google Scholar
  67. Philip J, Roger J, Vaslet D, Cecca F, Gardın S, Memesh AMS (2002) Sequence stratigraphy, biostratigraphy and paleontology of the Maastrichtian-Paleocene Aruma Formation in outcrop in Saudi Arabia. GeoArabia 7(4):699–718Google Scholar
  68. Pons JM, Vicens E (2008) The structure of the outer shell layer in radiolitid rudists, a morphoconstructional approach. Lethaia 41:219–234CrossRefGoogle Scholar
  69. Powers RW (1968) Arabie Saoudite. In: Lexique Stratigraphie Internationali, vol III: Asie, fasc. 10b. Center National de la Recerche Scientifique, Paris 177 pGoogle Scholar
  70. Powers RW, Ramirez LF, Redmond CD, Elberg EL, Jr (1966) Geology of the Arabian Peninsula. Sedimentary geology of Saudi Arabia. U.S. Geol Surv Prof Paper 560–D, 147 pGoogle Scholar
  71. Ross DJ, Skelton PW (1993) Rudist formations of the Cretaceous: a palaeoecological, sedimentological and stratigraphical review. In: Wright VP (ed) Sedimentology review, vol 1. Blackwell Scientific Publications, Hoboken, pp 73–91CrossRefGoogle Scholar
  72. Saber GS, Salama YF, Scott RW, Abdel-Gawad GI, Aly MF (2009) Cenomanian-Turonian rudist assemblages and sequence stratigraphy on the North Sinai carbonate shelf, Egypt. GeoArabia 14(4):113–134Google Scholar
  73. Sadooni FN (2005) The nature and origin of Upper Cretaceous basin-margin rudist buildups of the Mesopotamian Basin, southern Iraq, with consideration of possible hydrocarbon stratigraphic entrapment. Cretac Res 26(2):213–224CrossRefGoogle Scholar
  74. Sahraeyan M, Bahrami M, Arzaghi S (2013) Facies analysis and depositional environments of the Oligocene-Miocene Asmari Formation, Zagros Basin, Iran, southwestern Iran. J Geosci Front:1–10Google Scholar
  75. Sanders D (1998) Upper Cretaceous ‘Rudist Formations’. Geol Palӓontol Mitt Innsburck 23:37–59Google Scholar
  76. Sanders D (2001) Burrow-mediated carbonate dissolution in rudist biostromes (Aurisina, Italy): implications for taphonomy in tropical, shallow subtidal carbonate environments. Palaeogeogr Palaeoclimatol Palaeoecol 168:39–74CrossRefGoogle Scholar
  77. Sanders D, Pons JM (1999) Rudist formations in mixed siliciclastic carbonate depositional environments, Upper Cretaceous, Austria: stratigraphy, sedimentology, and models of development. Palaeogeogr Palaeoclimatol Palaeoecol 148:249–284CrossRefGoogle Scholar
  78. Schlüter M, Steuber T, Parente M (2008) Chronostratigraphy of Campanian–Maastrichtian platform carbonates and rudist associations of Salento (Apulia, Italy). Cretac Res 29:100–114CrossRefGoogle Scholar
  79. Schmitt JG, Boyd DW (1981) Patterns of silicification in Permian pelecypods and brachiopods from Wyoming. J Sedimet Petrol 51:1297–1308Google Scholar
  80. Scholle PA, Ulmer-Scholle DS (2003) A color guide to the petrology of carbonate rocks: grains, textures, porosity, diagenesis. AAPG Mem 77:461Google Scholar
  81. Scoffin TP (1987) An introduction to carbonate sediments and rocks. Blackie, Glasgow, p 274Google Scholar
  82. Selley RC (2000) Applied sedimentology. Academic Press, p 523Google Scholar
  83. Shakeri AR (2013) Microfacies, depositional environment and diagenetic processes of the Mauddud Member, in a field in the Persian Gulf. J Geol Geosci 2(2):1–10Google Scholar
  84. Sharland PR, Archer R, Casey DM, Davies RB, Hall SH, Heward AP, Horbury AD, Simmons MD (2001) Arabian plate sequence stratigraphy. GeoArabia, Special publication 2, Gulf PetroLink Bahrain, 371 pGoogle Scholar
  85. Skelton PW (1974) Aragonite shell structures in the rudist Biradiolites and some palaeobiological inferences. Géol Méditerr 1:63–74CrossRefGoogle Scholar
  86. Skelton PW, El-Asa’ad GMA (1992) A new canaliculate rudist bivalve from the Aruma Formation of Central Saudi Arabia. Geol Romana 28:105–117Google Scholar
  87. Steineke M, Bramkamp RA (1952) Stratigraphic introduction. In: Arkell WJ (ed) Jurassic ammonites from Jebel Tuwaiq, Central Arabia, vol 633. Phil. Trans. Royal Soc., London, pp 241–313Google Scholar
  88. Steuber T (2002) A palaeontological database of rudist bivalves (Mollusca: Hippuritoidea, Gray 1848). http://www.paleotax.de/rudists/. Accessed 07.01.2002
  89. Steuber T, Löser H (2000) Species richness and abundance patterns of Tethyan Cretaceous rudist bivalves (Mollusca: Hippuritacea) in the central-eastern Mediterranean and Middle East. Palaeogeogr Palaeoclimatol Palaeoecol 162:75–104CrossRefGoogle Scholar
  90. Steuber T, Özer S, Schlüter M, Sarı B (2009) Description of Paracaprinula syriaca Piveteau (Hippuritoidea, Plagioptychidae) and a revised age of ophiolite obduction on the African-Arabian Plate in southeastern Turkey. Cretac Res 30(1):41–48CrossRefGoogle Scholar
  91. Strohmenger CJ, Patterson PE, Al-Sahlan G, Mitchell JC, Feldman HR, Demko TM, Wellner RW, Lehmann PJ, Mccrimmon G, Broomhall RW, Al-Ajmi N (2006) Sequence stratigraphy and reservoir architecture of the Burgan and Mauddud formations (Lower Cretaceous), Kuwait. In: Harris PM, Weber LJ (eds) Giant hydrocarbon reservoirs of the world: from rocks to reservoir characterization and modeling. AAPG memoir 88, SEPM special publication, Tulsa, pp 213–245Google Scholar
  92. Taghavi AA, Mork A, Emadi MA (2006) Sequence stratigraphically controlled diagenesis governs reservoir quality in the carbonate Dehluran Field, southwest Iran. Pet Geosci 12:115–126CrossRefGoogle Scholar
  93. Tibljaš D, Moro A, Ostrež Ž (2004) Mineral and chemical composition of rudist valves from Upper Cretaceous limestones of Southern Istria, Croatia. Geol Croat 57(1):73–79Google Scholar
  94. Touir J, Soussi M (2003) The growth and migration of two Turonian rudistbearing carbonate platforms in Central Tunisia. Eustatic and tectonic controls. In: Gili E, Negra MH, Skelton PW (eds) Earth and environmental sciences: 28. North African Cretaceous Carbonate Platform Systems, Nato Science Series 4:53–81Google Scholar
  95. Tucker M (1988) Techniques in sedimentology. Blackwell Scientific Publications, Oxford, p 394Google Scholar
  96. Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell Science, Hoboken 482 pCrossRefGoogle Scholar
  97. Vandeginste V, John CM, Manning C (2013) Interplay between depositional facies, diagenesis and early fractures in the Early Cretaceous Habshan Formation, Jebel Madar, Oman. Mar Pet Geol 43:489–503CrossRefGoogle Scholar
  98. Ziegler MA (2001) Late Permian to Holocene paleofacies evolution of the Arabian Plate and its hydrocarbon occurrences. GeoArabia 6(3):455–504Google Scholar

Copyright information

© Saudi Society for Geosciences 2019

Authors and Affiliations

  • Sacit Özer
    • 1
    Email author
  • Abdelbaset S. El-Sorogy
    • 2
    • 3
  • Mohammad E. Al-Dabbagh
    • 2
  • Khaled Al-Kahtany
    • 2
  1. 1.Geological Engineering Department, Engineering FacultyDokuz Eylul UniversityİzmirTurkey
  2. 2.Geology and Geophysics Department, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Geology Department, Faculty of ScienceZagazig UniversityZagazigEgypt

Personalised recommendations