Advertisement

Hydrogeological characterization of a carbonate aquifer using geophysical and geochemical approach: case of the Krachoua Formation in Tataouine area, Southern Tunisia

  • Mouez GouasmiaEmail author
  • Houyem Khorchani
  • Abdelkader Mhamdi
  • Ferid Dhahri
  • Mohamed Soussi
Original Paper
  • 64 Downloads

Abstract

An integrated hydrogeological investigation involving geological surface data, well data (lithostratigraphical and piezometric data) and the vertical electrical sounding (VES) method was carried out in Tataouine area, Southern Tunisia to characterize the hydrogeology and the geochemistry of the Krachoua Formation aquifer. The electrical data were used to differentiate lithostratigraphic units and characterize their hydrogeological potentialities. Major elements contents within groundwater samples were assessed and some plots and diagrams have been established in order to investigate the hydrochemical properties of this aquifer and the origin of its mineralization. The Krachoua aquifer exhibits a general drawdown of the piezometric level from 2004 to 2015 reflecting a dramatic decrease in groundwater resources due to increased groundwater abstraction during the last decades. Flow directions shows that the recharge of this aquifer considered as a free aquifer is directly ensured by rainfalls over the outcropping fractured limestones. The geometry of the Krachoua Formation aquifer is tectonically controlled and structured in horst and graben features that impacted greatly the hydrogeology and the hydrodynamics of the area. Subsequent thickness and facies variations within this aquifer influenced the reservoir quality and the groundwater flows. The increased values of salinity to the northwest of the study area seems to be mainly related to the dissolution of the Upper Liassic gypsum of Mestaoua Formation which outcrops widely and can be dissolute easily by meteoric water and contaminate the Krachoua aquifer. This fact is also supported by the sulfated and calci-magnesian chloride facies of this aquifer related to the dissolution of evaporitic rocks (gypsum, anhydrite, and halite). However low salinity values are recorded within the zone where these evaporitic rocks are relatively deep.

Keywords

Hydrogeophysical investigation Geochemical approach Carbonate aquifer Tunisia 

Notes

Acknowledgments

The authors are grateful to the Editors of the Arabian Journal of Geosciences who handled this manuscript and the anonymous reviewers for their constructive review and useful comments that improved the manuscript.

References

  1. Asfahani J (2006) Geoelectrical investigation for characterizing the hydrogeological conditions in semi-arid region in Khanasser valley, Syria. J Arid Environ 68:31–52CrossRefGoogle Scholar
  2. Barth SR (2000) Stable isotope geochemistry of sediment-hosted groundwater from a Late Paleozoic–Early Mesozoic section in central Europe. J Hydrol 235:72–87CrossRefGoogle Scholar
  3. Ben Moussa A, Zouari K, Oueslati N (2009) Geochemical study of groundwater mineralization in the Grombalia shallow aquifer, north-eastern Tunisia: implication of irrigation and industrial waste water accounting. Environ Geol 58:555–567CrossRefGoogle Scholar
  4. Bouaziz S (1995) Etude de la tectonique cassante dans la plate-forme et l’Atlas sahariens (Tunisie méridionale): Evolution des paléochamps de contraintes et implications géodynamiques. Thèse de doctorat, Université de Tunis II. In: 485 ppGoogle Scholar
  5. Burollet PF (1963) Discussion sur la stratigraphie libyenne. Revue de l’Institut Français du Pétrole 18(10):1323–1329Google Scholar
  6. Busson G (1970) Le Mésozoïque saharien: 2ème partie: Essai de synthèse des données des sondages algéro-tunisiens. CNRS, Paris 811 ppGoogle Scholar
  7. Busson G (1972) Principes, méthodes et résultats d’une étude stratigraphique du Mésozoique Saharien. Mémoires du Muséum National d’Histoire Naturelle - Série C 26 441 ppGoogle Scholar
  8. Chandoul H, Burollet FP, Ben Ferjani A et Memmi L (1993) Recueil des coupes types de Tunisie, Trias et Jurassique. ETAP, Mémoire N°4, 96 pp.Google Scholar
  9. Cimino A, Cosentino C, Oieni A, Tranchina L (2008) A geophysical and geochemical approach for seawater intrusion assessment in the Acquedolci coastal aquifer (Northern Sicily). Environ Geol (2008) 55:1473–1482.Google Scholar
  10. El Kashouty M, Aziz AA, Soliman M, Mesbah H (2010) Hydrogeophysical investigation of groundwater potential in the El Bawiti, Northern Bahariya Oasis, Western Desert Egypt Arab J Geosci doi: https://doi.org/10.1007/s12517-010-0253-8
  11. Gabtni H, Gouasmia M (2013) Joint evaluation of gravity, electrical, and magnetotelluric methods for geothermal potential of fractured Aptian reefal carbonates in the Hmaima–El Gara area (Oued Serrat basin, Central–Western Tunisia). M. Arab J Geosci 6:1569.  https://doi.org/10.1007/s12517-011-0442-0
  12. Gouasmia M, Gasmi M, Mhamdi A, Bouri S, Ben Dhia H (2006) Prospection géoélectrique pour l’étude de l’aquifère thermal des calcaires récifaux, Hmeïma-Boujabeur (Tunisie Centre Ouest). Comptes Rendus de l’Académie des Sciences (CRAS), Vol. 338. pp. 1219–1227, 2006.Google Scholar
  13. Hamed Y, Dassi L, Tarki M, Ahmadi R, Mehdi K, Ben Dhia H (2010) Groundwater origins and mixing pattern in the multilayer aquifer system of the Gafsa-south mining district: a chemical and isotopic approach. Environ Earth Sci 63:1355–1368CrossRefGoogle Scholar
  14. Hanshaw BB, Back W (1979) Major geochemical processes in the evolution of carbonate aquifer systems. J Hydrol 43:287–312CrossRefGoogle Scholar
  15. Jellalia D, Lachaal F, Andoulsi M, Zouaghi T, Hamdi M, Bedir M (2015) Hydro-geophysical and geochemical investigation of shallow and deep Neogene aquifer systems in Hajeb Layoun-Jilma-Ouled Asker area, Central Tunisia. J Afr Earth Sci 110(2015):227–244CrossRefGoogle Scholar
  16. Kamel S (2011) Salinization origin and hydrogeochemical behavior of the Djerid oasis water table aquifer (southern Tunisia). Arab J Geosci 6(6):2103–2117CrossRefGoogle Scholar
  17. Kamoun F, Peybernès B, Cizak R, Calzada S (2001) Triassic paleogeography of Tunisia. Paleogeography. Palaeoclimatology, Palaeocology 172:223–242CrossRefGoogle Scholar
  18. Lachaal F, Bédir M, Tarouni J, Ben Gacha A, Leduc C (2011) Characterizing a complex aquifer system using geophysics, hydrodynamics and geochemistry: a new distribution of Miocene aquifers in the Zéramdine and Mahdia-Jébéniana blocks (east-central Tunisia). J Afr Earth Sci 60:222–236CrossRefGoogle Scholar
  19. Mc Intosh JC, Walter LM (2006) Paleowaters in Silurian–Devonian carbonate aquifers: geochemical evolution of groundwater in the Great Lakes region since the Late Pleistocene. Geochim Acta 70:2454–2479CrossRefGoogle Scholar
  20. Mhamdi A, Gouasmia M, Gasmi M, Bouri S, Ben Dhia H (2006) Evaluation de la qualité de l’eau par application de la méthode geoelectrique: exemple de la plaine d’El Mida-Gabes Nord (Sud tunisien). Compt Rendus Geosci 338:1228–1239CrossRefGoogle Scholar
  21. Mhamdi A, Dhahri F, Gouasmia M, Inoubli N, Soussi M, Ben Dhia H (2013) Groundwater investigation in the southern part of gabes using resistivity sounding, southern Tunisia. Arab J Geosci 6(2):601–614CrossRefGoogle Scholar
  22. Mhamdi A, Dhahri F, Gouasmia M, Moumni L, Soussi M (2015) Groundwater salinization survey of the Upper Cretaceous-Miocene Complexe terminal aquifer in the Sabaa Biar area of southwestern Tunisia. J Afr Earth Sci 112 (2015). 83–92.Google Scholar
  23. Mokadem N, Demdoum A, Hamed Y, Bouri S, Hadji R, Boyce A, Laouar R, Sâad A (2016) Hydrogeochemical and stable isotope data of Groundwater of a multi-aquifer system: Northern Gafsa basin - Central Tunisia. J Afr Earth Sci 114:174–191CrossRefGoogle Scholar
  24. Plummer LN, Prestemon E, Parkhurst DL (1992) An interactive code (netpath) for 14 modeling net geochemical reactions along a flow path. USGS Water Resour Inv Rep. 15 91–4078, US Geological Survey.Google Scholar
  25. Shaaban FF (2001) Vertical electrical soundings for groundwater investigation in Northwestern Egypt: a case study in a coastal area. J Afr Earth Sci 33:673–668CrossRefGoogle Scholar
  26. Sherif M, El Mahmoudi A, Garamoon H, Kacimov A, Akram S, Ebraheem A, Shetty A (2006) Geoelectrical and hydrogeochemical studies for delineating seawater intrusion in the outlet of Wadi Ham, UAE. Environ Geol 49(4):536–551CrossRefGoogle Scholar
  27. Shouakar-Stash O, Alexeev SV, Frape SK, Alexeeva LP, Drimmie RJ (2007) Geochemistry and stable isotopic signatures, including chlorine and bromine isotopes, of the deep groundwaters of the Siberian Platform, Russia. Appl Geochem 22:589–605CrossRefGoogle Scholar
  28. Simler R (2000) Logiciel d’hydrochimie. Diagrammes (v5.0). Laboratoire d’Hydrogéologie d’Avignon.Google Scholar
  29. Sikandar P, Bakhsh A, Ali T, Arshad M (2010) Vertical electrical sounding (VES) resistivity survey technique to explore low salinity groundwater for tubewell installation in chaj Doab. J Agric Res., (03681157), 48(4).Google Scholar
  30. Ugada U, Ibe K, Akaolisa CZ, Opara IA (2014) Hydrogeophysical evaluation of aquifer hydraulic characteristics using surface geophysical data: a case study of Umuahia and environs, Southeastern Nigeria. Arab J Geosci 7(2014):5397–5408CrossRefGoogle Scholar
  31. Yahyaoui H (1996) Etude hydrogéologique des aquifères du Piémont Oriental et du flanc Occidental du Dahar (Régions de Remada et de Dehibat). Thesis, Fac Sc Tunis, p. 171.Google Scholar
  32. Zouhri L, Gorini C, Mania J, Deffontaines B, Zerouali A (2004) Spatial distribution of resistivity in the hydrogeological systems, and identification of the catchment area in the Rharb basin, Morocco. Hydrol Sci J 49:387–398CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  • Mouez Gouasmia
    • 1
    • 2
    Email author
  • Houyem Khorchani
    • 3
  • Abdelkader Mhamdi
    • 1
    • 2
  • Ferid Dhahri
    • 1
    • 4
  • Mohamed Soussi
    • 2
  1. 1.Faculty of Sciences of GafsaUniversity of GafsaGafsaTunisia
  2. 2.Faculty of Sciences of Tunis, UR11ES15 Sedimentary Environments, Petroleum Systems and Reservoirs CharacterizationUniversity of Tunis El ManarTunisTunisia
  3. 3.Faculty of Sciences of GabesUniversity of GabesGabèsTunisia
  4. 4.Faculty of Sciences of Tunis, Laboratory 3G (Geodynamics, Geo-digital and Georessources)University of Tunis El ManarTunisTunisia

Personalised recommendations