Planning and systematic management of water resources by the WEAP model, case of the Mabtouh watershed (northwestern Algeria)

  • Laidia Zerkaoui
  • Mohamed Benslimane
  • Abderrahmane Hamimed
Original Paper


Water management remains a complex task due to the multiplicity of users-consumers, which necessitates the use of planning tools and decision support in a rigorous manner. The objective of the present study is to find an alternative solution to the water use conflict applied to a scale of a hydrographic unit. Our choice focused on the Mebtouh River watershed (1306 km2), where there is a chronic water shortage. With an irrigated perimeter of 8200 ha and an urban area with a regional dimension, the hydraulic system is based on a Dam (Cheurfa) with a capacity of 83 hm3 and diversions by pumping over the river. The methodology adopted is the application of the WEAP software, with a view to constructing a water resource allocation model by 2050. The data set consists of the physical parameters of the study area, hydroclimatic records for the reference year (2015), and the estimation of urban and agricultural water demand sites. The results obtained by the WEAP model applied to our study area confirm the validation of the data used. Therefore, it is timely to develop a water resources management tool to reduce user-consumer tensions at the planned planning timeline.


Water management Modeling WEAP Watershed Mabtouh Algeria 


  1. ANBT (agence nationale des barrages et des transferts) (2004) Etude de la protection des bassins versants de l’ensemble des barrages en avant-projet et en exploitation. Rapport définitif. Tecsult International / MRE/ RADP, pp. 178Google Scholar
  2. ANRH (agence nationale des barrages et des transferts) (2009) Carte des ressources en eau des eaux souterraine –Présentation des unîtes hydrogéologiques région Ouest. Dossier B, pp. 38Google Scholar
  3. Arthur J, Mara M G (1993) Etude du schéma d’aménagement directeur de la zone littoral de la Wilaya de Tlemcen, 4 TGoogle Scholar
  4. Barreteau O, Richard A, Garin P (2008) Tools and methods in support of watershed management. La Houille Blanche, pp. 48–55Google Scholar
  5. Beddal D (2015) Analyse statistique des apports liquides en climat semi-aride, cas du bassin versant de la Macta. Thèse Magister.Univ. H.B Chlef, pp 158Google Scholar
  6. Dimova R, Olabimtan A (2017) Does access to formal finance matter for welfare and inequality? Micro level evidence from Nigeria. Journal of Development Studies, pp.17Google Scholar
  7. Heddad R, Nouiri I, Alshihabi O, Mabmann J, Huber M, Laghouane A, Yahiaoui H, Tarhouni J (2013) A decision support system to manage the groundwater of the Zeuss Koutine aquifer using the WEAP-MODFLOW framework. Water Resour Manag 27(7):1981–2000CrossRefGoogle Scholar
  8. Joyce B, Vicuna S, Dale L, Dracup J, Hanemann M, Purkey D, Yates D (2006) Climate change impacts on water for agriculture in California: a case study in the Sacramento Valley, California. Climate Change Center, Report CEC-500- 2005-194-SFGoogle Scholar
  9. Jabloun M, Sahli A (2012) WEAP-MABIA tutorial: a collection of stand-alone chapters to aid in learning the WEAP-MABIA module. Federal Institute for Geosciences and Natural Resources, Hannover, GermanyGoogle Scholar
  10. Le Page M, Berjamy B, Fakir Y, Bourgin F, Jarlan L, Abourida A, Benrhanem M, Jacob G, Hube M, Sghrer F, Simonneaux V, Chehbouni G (2012) An integrated SAD for groundwater management based on remote sensing the case of a semi-arid aquifer in Morocco. Water Resour Manag 26(11):3209–3230CrossRefGoogle Scholar
  11. Meddi M, Talia A, Martin C (2009) Evolution récente des conditions climatiques et des écoulements sur le bassin versant de la Macta (Nord-ouest de l’Algérie). Physio-GéoVol.12Google Scholar
  12. Messahel M (2005) Efficiency of irrigation systems in Algeria: communication as part of the 5th social science research day at agro sup Dijon.8-9 December 2011.FranceGoogle Scholar
  13. Nouiri I (2015) Modélisation par WEAP de la gestion des ressources en eau et des usages du système Nebhana en Tunisie. Conférence Paper. Actes du colloque EauClimat. Nov. 2015-Constantine. Accessed 15 Dec 2017
  14. Ould Zaoui S, Snani S, Djebbar Y (2010) Management of water resources at Souk-Ahras region (Algeria). Centre Universitaire de Souk-Ahras Algeria. Fourteenth International Water Technology Conference. IWTC 14 2010. Cairo Egypt, 599–608Google Scholar
  15. Paloma E, Irene V, Consuelo B, Thomas E (2015) A hydro-economic model for the assessment of climate change impacts and adaptation in irrigated agriculture. Science direct. Open access Elsevier. Ecological Economics, pp. 49–58Google Scholar
  16. PAW (plan d’aménagement de la wilaya de Mascara) (2013) Etat des besoins socio-économiques. Phase IV, DPAT/TAD-Consult. Rapport final, pp.156Google Scholar
  17. Rakotondrabe F (2007) Study of the vulnerability of water resources to climate change, modeling by WEAP 21.Case of the Morondava watershed (south-west of Madagascar).Memory in hydrogeology. University of Antananarivo (Madagascar), pp. 87Google Scholar
  18. RGA (recensement générale de l’agriculture) (2001) Rapport général des résultats définitifs. Publié par la DSASI/MADRP, juin 2003. Website : Accessed 25 Sept 2017
  19. RGPH (recensement général de la population et de l’habitat) (2008) Répartition de la population résidente des ménages ordinaires et collectifs. Rapport ONS/RADP, pp. 10Google Scholar
  20. Skoulikaris C (2008) Mathematical modeling applied to the sustainable management of water resources projects at a river basin scale the case of the Mesta-Nestos. EcoleNationaleSupérieure des Mines de ParisGoogle Scholar
  21. SEI (Stockholm Environment Institute) (2008) WEAP (Water Evaluation and Planning). User Guide for WEAP21. Boston USA. Available from: Accessed 10 Jan 2018
  22. Sanches Fernandes LF, Terêncio DPS, Pacheco FAL (2015) Rainwater harvesting systems for low demanding applications. Sci Total Environ 529:91–100CrossRefGoogle Scholar
  23. Terêncio DPS, Sanches Fernandes LF, Cortes RMV, Pacheco FAL (2017) Improved framework model to allocate optimal rainwater harvesting sites in small watersheds for agro-forestry uses. J Hydrol 550:318–330CrossRefGoogle Scholar
  24. Yates DN, Sieber J, Purkey DR, Huber-Lee A (2005) WEAP 21: a demand, priority and preference-driven water planning model. Model Characteristics Water Int 30:487–500CrossRefGoogle Scholar
  25. Zakari M, Chuan M, Issoufou A (2011) Application of water evaluation and planning (WEAP). A model to assess future water demands in the Niger River (Niger). Appl Sci Center Sci Edu Can 5:38–49Google Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  • Laidia Zerkaoui
    • 1
  • Mohamed Benslimane
    • 1
  • Abderrahmane Hamimed
    • 2
  1. 1.Laboratory of Geomatics, Ecology and Environment (LGEE), Faculty of Sciences of Nature and LifeUniversity Mustapha Stambouli – MascaraMascaraAlgeria
  2. 2.Biological Systems and Geomatics Research Laboratory (LRSBG), Faculty of Natural and Life SciencesMustapha Stambouli University of MascaraMascaraAlgeria

Personalised recommendations