3D modeling of geoelectrical data: assessment of groundwater potentialities in Hassi R’mel (Southern Algeria)

  • F. BouhmadoucheEmail author
  • M. A. Bounif
  • M. Aoudia
Part of the following topical collections:
  1. Current Advances in Geology of North Africa


This work reveals the modeling contribution to the techniques of investigations in the electrical resistivity area. Two campaigns of electric soundings (maximum length AB = 6000 m) were conducted in the Saharan region—Hassi R’mel (Algeria), to supply two new cities with drinking water. An analytical procedure, also known as inversion, was applied to the processing of the registered measurements. The results of this interpretation allowed to locate the porous and permeable formations likely to be aquifers. A simulation algorithm based on the finite difference method has been adapted for the direct calculation of the electrical resistivity data. The obtained models laid a more detailed description of the subsurface structure. So, based on these results adjusted with the help of drill logs of the region, it is believed that the best orientation for the exploitation of these waters in the first evaluated zone (Bellil) is in the Northeast part of the area under investigation, whereas in the second region (Bouzbier), the privileged areas are those located in the North-east and the South-east parts.


Algeria Electrical resistivity Modeling Finite difference method Hassi R’mel Inversion Sounding Water 


  1. Abdul-Nassir SS, Loke MH, Lee CY, Nawawi MNM (2000) Salt-water intrusion mapping by geoelectrical imaging surveys. Geophys Prospect 48:647–661CrossRefGoogle Scholar
  2. Chambers J, Ogilvy R, Meldrum P (1999) 3D resistivity imaging of buried oiland tar- contaminated waste deposits. Eur J Environ Eng Geophys 4:3–14Google Scholar
  3. Dey A, Morrison HF (1979) Resistivity modelling for arbitrarily shaped three-dimensional structures. Geophysics 44:753–780CrossRefGoogle Scholar
  4. Ellis R, Oldenburg D (1994) The pole-pole 3-D Dc-resistivity inverse problem: a conjugate gradient approach. Geophys J Int 119(1):187–194CrossRefGoogle Scholar
  5. Fabre J (1976) Introduction à la géologie du Sahara algérien et régions voisines. SNED, Alger, Algérie, p 422Google Scholar
  6. Fabre J (1978) Carte géologique du Nord-Ouest de l’Afrique, 1/5.000.000. Soc Nat Ed. Diff. Alger, Algérie; 1978Google Scholar
  7. Lee T (1975) An integral equation and its solution for some two-and three-dimensional problems in resistivity and induced polarization. Geophys J R Astron Soc 42(1):81–95CrossRefGoogle Scholar
  8. Li Y, Spitzer K (2002) Three-dimensional DC resistivity forward modeling using finite elements in comparison with finite-difference solutions. Geophys J Int 151(3):924–934CrossRefGoogle Scholar
  9. Loke MH, Barker RD (1996) Practical techniques for 3d resistivity surveys and data inversion. Geophys Prospect 44:499–523CrossRefGoogle Scholar
  10. Ma Q (2002) The boundary element method for 3-D dc resistivity modeling in layered earth. Geophysics 67(2):610–617CrossRefGoogle Scholar
  11. Marescot L, Loke MH, Chapellier D, Delaloye R, Lambiel C, Reynard E (2003) Assessing reliability of 2D resistivity imaging in mountain permafrost studies using the depth of investigation index method. Near Surface Geophysics 1:55–67CrossRefGoogle Scholar
  12. Michot D (2003) Intérêt de la géophysique de subsurface et de la télédétection multispectrale pour la cartographie des sols et le suivi de leur fonctionnement hydrique à l’échelle interparcellaire. Thèse de doctorat de l’Université Paris 6 395 pGoogle Scholar
  13. Mirgalikyzy T, Mukanova B, Modin I (2015) Method of integral equations for the problem of electrical tomography in a medium with ground surface relief. J Appl Math 2015:1–10Google Scholar
  14. Mufti IR (1976) Finite-difference resistivity modeling for arbitrarily shaped two-dimensional structures. Geophysics 41:62–78CrossRefGoogle Scholar
  15. Panissod C (1997) Prospection électrique et électrostatique à faible profondeur à l’aide de systèmes multipôles permettant la description directe des structures en 3-D. Thèse de doctorat de l’Université Paris 6 238 pGoogle Scholar
  16. Park SK, Van GP (1991) Inversion of pole-pole data for 3-d resistivity structure beneath arrays of electrodes. Geophysics 56:951–960CrossRefGoogle Scholar
  17. Ramirez A, Daily W (2001) Electrical imaging at the large block test; Yucca Mountain, Nevada. J Appl Geophys 46:85–100CrossRefGoogle Scholar
  18. Spitzer K (1995) 3-d finite-difference algorithm for dc resistivity modelling using conjugate gradient methods. Geophys J Int 123:903–914CrossRefGoogle Scholar
  19. Zhou B, Greenhalgh SA (2001) Finite element three-dimensional direct current resistivity modeling: accuracy and efficiency considerations. Geophys J Int 145(3):679–688CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  1. 1.Department of Geophysics, Faculty of Earth Sciences, Geography and Territorial PlanningHouari Boumediene University of Sciences and TechnologyAlgiersAlgeria
  2. 2.University of Algiers 1AlgiersAlgeria

Personalised recommendations