Advertisement

Spatiotemporal trends in freshwater availability in the Red Sea Hills, Saudi Arabia

  • Burhan A. Niyazi
  • Mohamed Ahmed
  • Jalal M. Basahi
  • Milad Z. Masoud
  • Mohamed A. Rashed
Original Paper
  • 80 Downloads

Abstract

The availability and the future of freshwater resources are major challenges in the Middle East, and a vital issue for the Kingdom of Saudi Arabia. Temporal Gravity Recovery and Climate Experiment (GRACE) data along with other datasets are employed to monitor the spatiotemporal trends in freshwater availability over the Red Sea Hills, and to examine natural and anthropogenic factors controlling these trends. Results indicate that the Red Sea Hills are witnessing GRACE-derived terrestrial water storage (TWS) depletion of − 3.92 ± 0.09 km3. TWS depletions are attributed mainly to decline in annual rainfall amounts during the investigated period (April 2002 to December 2016; 70 mm) compared to that of the previous two decades (1979–2001; 115 mm). Higher TWS depletion rates (− 6.31 ± 0.10 km3/year) are observed over the central and northern parts of the Red Sea Hills compared to those observed over the southern parts (− 1.89 ± 0.30 km3/year). The Red Sea Hills witness lower TWS depletion rates (− 1.22 ± 0.51 km3/year) during the first 4 years of the investigation (April 2002 to August 2006; Period I); higher TWS depletion rates (− 4.31 ± 0.15 km3/year) are observed during the remaining part of the investigation (September 2006 to January 2017; Period II) due to the temporal variability in annual rainfall amounts (Period I 85 mm; Period II 65 mm). Findings demonstrate the successful use of GRACE data for monitoring freshwater availability in the Red Sea Hills and potential for use in studying freshwater resource availability in other hydrologic systems around the globe.

Keywords

Red Sea Hills GRACE TWS Depletion Rainfall Climate change 

Notes

Funding information

This article presents a part of the results of a project funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. (RG-2-123-39). The authors, therefore, acknowledge with thanks DSR technical and financial support.

References

  1. A G, Wahr J, Zhong S (2013) Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to glacial isostatic adjustment in Antarctica and Canada. Geophys J Int 192:557–572.  https://doi.org/10.1093/gji/ggs030 CrossRefGoogle Scholar
  2. Adeyewa ZD, Nakamura K (2003) Validation of TRMM radar rainfall data over major climatic regions in Africa. J Appl Meteorol 42:331–347.  https://doi.org/10.1175/1520-0450(2003)042<0331:VOTRRD>2.0.CO;2 CrossRefGoogle Scholar
  3. Agar R (1987) The najd fault system revisited; a two-way strike-slip orogen in the Saudi Arabian shield. J Struct Geol 9:41–48.  https://doi.org/10.1016/0191-8141(87)90042-3 CrossRefGoogle Scholar
  4. Ahmed M, Abdelmohsen K (2018) Quantifying modern recharge and depletion rates of the Nubian aquifer in Egypt. Surv Geophys 39:1–23.  https://doi.org/10.1007/s10712-018-9465-3 CrossRefGoogle Scholar
  5. Ahmed M, Sultan M, Wahr J, Yan E, Milewski A, Sauck W, Becker R, Welton B (2011) Integration of GRACE (gravity recovery and climate experiment) data with traditional data sets for a better understanding of the time-dependent water partitioning in African watersheds. Geology 39:479–482.  https://doi.org/10.1130/G31812.1 CrossRefGoogle Scholar
  6. Ahmed M, Sultan M, Wahr J, Yan E (2014) The use of GRACE data to monitor natural and anthropogenic induced variations in water availability across Africa. Earth-Sci Rev 136:289–300.  https://doi.org/10.1016/j.earscirev.2014.05.009 CrossRefGoogle Scholar
  7. Ahmed M, Sultan M, Yan E, Wahr J (2016) Assessing and improving land surface model outputs over Africa using GRACE, field, and remote sensing data. Surv Geophys 37:529–556.  https://doi.org/10.1007/s10712-016-9360-8 CrossRefGoogle Scholar
  8. Alharbi T (2014) Integrated (remote sensing, GIS, and modeling) hydrological investigation and landslide susceptibility studies in the Arabian shield. DissertationsGoogle Scholar
  9. Alsharhan AS, Rizk ZA, Nairn AEM, Bakhit DW, Alhajari SA (2001) Hydrogeology of an arid region: the Arabian gulf and adjoining areas. Elsevier, Amsterdam, p 366Google Scholar
  10. Beighley RE, Ray RL, He Y, Lee H, Schaller L, Andreadis KM, Durand M, Alsdorf DE, Shum CK (2011) Comparing satellite derived precipitation datasets using the Hillslope River Routing (HRR) model in the Congo River Basin. Hydrol Process 25:3216–3229.  https://doi.org/10.1002/hyp.8045 CrossRefGoogle Scholar
  11. Bucchignani E, Cattaneo L, Panitz H-J, Mercogliano P (2015) Sensitivity analysis with the regional climate model COSMO-CLM over the CORDEX-MENA domain. Meteorog Atmos Phys 128:73–95.  https://doi.org/10.1007/s00703-015-0403-3 CrossRefGoogle Scholar
  12. Cheng M, Ries JC, Tapley BD (2011) Variations of the Earth’s figure axis from satellite laser ranging and GRACE. J Geophys Res 116:B01409.  https://doi.org/10.1029/2010JB000850 CrossRefGoogle Scholar
  13. Coleman RG, Gregory RT, Brown GF (1983) Cenozoic volcanic rocks of Saudi Arabia. Open file report, US Geol Surv OF93, 82p.  https://doi.org/10.3133/OFR83788
  14. DeNicola E, Aburizaiza OS, Siddique A, Siddique A, Khwaja H, Carpenter DO (2015) Climate change and water scarcity: the case of Saudi Arabia. Ann Glob Health 81:342–353.  https://doi.org/10.1016/J.AOGH.2015.08.005 CrossRefGoogle Scholar
  15. Dinku T, Chidzambwa S, Ceccato P, Connor SJ, Ropelewski CF (2008) Validation of high-resolution satellite rainfall products over complex terrain. Int J Remote Sens 29:4097–4110.  https://doi.org/10.1080/01431160701772526 CrossRefGoogle Scholar
  16. Fallatah OA, Ahmed M, Save H, Akanda AS (2017) Quantifying temporal variations in water resources of a vulnerable middle eastern transboundary aquifer system. Hydrol Process 31:4081–4091.  https://doi.org/10.1002/hyp.11285 CrossRefGoogle Scholar
  17. Gardner AS, Moholdt G, Cogley JG, Wouters B, Arendt AA, Wahr J, Berthier E, Hock R, Pfeffer WT, Kaser G, Ligtenberg SRM, Bolch T, Sharp MJ, Hagen JO, van den Broeke MR, Paul F (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340:852–857.  https://doi.org/10.1126/science.1234532 CrossRefGoogle Scholar
  18. Han S-C, Riva R, Sauber J, Okal E (2013) Source parameter inversion for recent great earthquakes from a decade-long observation of global gravity fields. J Geophys Res Solid Earth 118:1240–1267.  https://doi.org/10.1002/jgrb.50116 CrossRefGoogle Scholar
  19. Jacob T, Wahr J, Pfeffer WT, Swenson S (2012) Recent contributions of glaciers and ice caps to sea level rise. Nature 482:514–518.  https://doi.org/10.1038/nature10847 CrossRefGoogle Scholar
  20. Mohamed A, Sultan M, Ahmed M, Yan E, Ahmed E (2016) Aquifer recharge, depletion, and connectivity: inferences from GRACE, land surface models, geochemical, and geophysical data. GSA Bull 129:1–13.  https://doi.org/10.1130/B31460.1 CrossRefGoogle Scholar
  21. Ouda OKM, Al-Waked RF, Alshehri AA (2014) Privatization of water-supply services in Saudi Arabia: a unique experience. Util Policy 31:107–113.  https://doi.org/10.1016/j.jup.2014.10.003 CrossRefGoogle Scholar
  22. Peralta-Ferriz C, Morison JH, Wallace JM, Bonin JA, Zhang J (2014) Arctic Ocean circulation patterns revealed by GRACE. J Clim 27:1445–1468.  https://doi.org/10.1175/JCLI-D-13-00013.1 CrossRefGoogle Scholar
  23. Rodell M, Famiglietti JS, Wiese DN, Reager JT, Beaudoing HK, Landerer FW, Lo MH (2018) Emerging trends in global freshwater availability. Nature 557:651–659.  https://doi.org/10.1038/s41586-018-0123-1 CrossRefGoogle Scholar
  24. Save H, Bettadpur S, Tapley B (2016) High resolution CSR GRACE RL05 mascons. J Geophys Res 121:7547–7569.  https://doi.org/10.1002/2016JB013007 CrossRefGoogle Scholar
  25. Scanlon BR, Zhang Z, Save H, Wiese DN, Landerer FW, Long D, Longuevergne L, Chen J (2016) Global evaluation of new GRACE mascon products for hydrologic applications. Water Resour Res 52:9412–9429.  https://doi.org/10.1002/2016WR019494 CrossRefGoogle Scholar
  26. Stern E, Krakover S (2010) The formation of a composite urban image. Geogr Anal 25:130–146.  https://doi.org/10.1111/j.1538-4632.1993.tb00285.x CrossRefGoogle Scholar
  27. Sultan M, Arvidson RE, Duncan IJ, Stern RJ, el Kaliouby B (1988) Extension of the Najd shear system from Saudi Arabia to the central eastern desert of Egypt based on integrated field and LANDSAT observations. Tectonics 7:1291–1306.  https://doi.org/10.1029/TC007i006p01291 CrossRefGoogle Scholar
  28. Sultan M, Becker R, Arvidson RE et al (1992) Nature of the Red-Sea Crust—a controversy revisited. Geology 20:593–596.  https://doi.org/10.1130/0091-7613(1992)020<0593:Notrsc>2.3.Co;2 CrossRefGoogle Scholar
  29. Sultan M, Ahmed M, Sturchio N, Yan YE, Milewski A, Becker R, Wahr J, Becker D, Chouinard K (2013) Assessment of the vulnerabilities of the Nubian sandstone fossil aquifer, North Africa. In: Pielke RA, Hossain F (eds) Climate vulnerability: understanding and addressing threats to essential resources. Elsevier Inc., Academic Press, pp 311–333CrossRefGoogle Scholar
  30. Sultan M, Ahmed M, Wahr J et al (2015a) Monitoring aquifer depletion from space: case studies from the Saharan and Arabian aquifers. In: Lakshmi V, Alsdorf D, Anderson M, Biancamaria S, Cosh M, Entin J, Huffman G, Kustas W, Oevelen P, Painter T, Parajka J, Rodell M, Rüdiger C (eds) Remote Sensing of the Terrestrial Water Cycle. Wiley & Sons, Hoboken, pp 349–366.  https://doi.org/10.1002/9781118872086 CrossRefGoogle Scholar
  31. Sultan M, Sefry S, Abuabdallah M (2015b) Impacts of climate change on the Red Sea region and its watersheds, Saudi Arabia. In Rasul N, Stewart I (eds) The Red Sea: The Formation, Morphology, Oceanography and Environment of a Young Ocean Basin, pp 363-377.  https://doi.org/10.1007/978-3-662-45201-1 Google Scholar
  32. Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33:L08402.  https://doi.org/10.1029/2005GL025285 CrossRefGoogle Scholar
  33. Swenson S, Wahr J (2009) Monitoring the water balance of Lake Victoria, East Africa, from space. J Hydrol 370:163–176.  https://doi.org/10.1016/j.jhydrol.2009.03.008 CrossRefGoogle Scholar
  34. Swenson S, Chambers D, Wahr J (2008) Estimating geocenter variations from a combination of GRACE and ocean model output. J Geophys Res 113:B08410.  https://doi.org/10.1029/2007JB005338 CrossRefGoogle Scholar
  35. Sylla MB, Giorgi F, Coppola E, Mariotti L (2013) Uncertainties in daily rainfall over Africa: assessment of gridded observation products and evaluation of a regional climate model simulation. Int J Climatol 33:1805–1817.  https://doi.org/10.1002/joc.3551 CrossRefGoogle Scholar
  36. Tapley BD, Bettadpur S, Ries JC et al (2004a) GRACE measurements of mass variability in the Earth system. Science 305:503–505.  https://doi.org/10.1126/science.1099192 CrossRefGoogle Scholar
  37. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004b) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31:1–4.  https://doi.org/10.1029/2004GL019920 CrossRefGoogle Scholar
  38. Tarawneh Q, Chowdhury S, Tarawneh QY, Chowdhury S (2018) Trends of climate change in Saudi Arabia: implications on water resources. Climate 6:8.  https://doi.org/10.3390/cli6010008 CrossRefGoogle Scholar
  39. Thomas AC, Reager JT, Famiglietti JS, Rodell M (2014) A GRACE-based water storage deficit approach for hydrological drought characterization. Geophys Res Lett 41:1537–1545.  https://doi.org/10.1002/2014GL059323 CrossRefGoogle Scholar
  40. Tiwari VM, Wahr J, Swenson S (2009) Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys Res Lett 36:1–5.  https://doi.org/10.1029/2009GL039401 CrossRefGoogle Scholar
  41. Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103:30205–30229.  https://doi.org/10.1029/98JB02844 CrossRefGoogle Scholar
  42. Watkins MM, Wiese DN, Yuan D et al (2015) Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J Geophys Res Solid Earth 120:2648–2671.  https://doi.org/10.1002/2014JB011547.Received CrossRefGoogle Scholar
  43. Wiese DN, Landerer FW, Watkins MM (2016) Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution. Water Resour Res 52:7490–7502.  https://doi.org/10.1002/2016WR019344 CrossRefGoogle Scholar
  44. Worldometers (2018) Saudi Arabia Population (2018). http://www.worldometers.info/world-population/saudi-arabia-population/. Accessed 27 May 2018
  45. Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558.  https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2 CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  • Burhan A. Niyazi
    • 1
    • 2
  • Mohamed Ahmed
    • 3
    • 4
  • Jalal M. Basahi
    • 2
  • Milad Z. Masoud
    • 1
    • 5
  • Mohamed A. Rashed
    • 1
    • 4
  1. 1.Water Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Department of Hydrology and Water Resources Management, Faculty of Meteorology, Environment and Arid Land AgricultureKing Abdulaziz UniversityJeddahSaudi Arabia
  3. 3.Department of Physical and Environmental SciencesTexas A&M University-Corpus ChristiCorpus ChristiUSA
  4. 4.Geology DepartmentSuez Canal UniversityIsmailiaEgypt
  5. 5.Hydrology DepartmentDesert Research CenterCairoEgypt

Personalised recommendations