Petrogenesis and evolution of the Nuweibi rare-metal granite, Central Eastern Desert, Egypt

  • Ashraf Emam
  • Basem Zoheir
  • Abdelhady Mohammed RadwanEmail author
  • Bernd Lehmann
  • Rongqing Zhang
  • Sherif Fawzy
  • Nicole Nolte
Part of the following topical collections:
  1. Current Advances in Geology of North Africa


The Nuweibi rare-metal granite in the Central Eastern Desert of Egypt is highly evolved fine- to medium-grained leucogranite affected by pervasive albitization and greisenization. The intrusion holds an important tin–tantalum resource in the Egyptian Eastern Desert. Columbite–tantalite and cassiterite disseminations occur within the granite body, while the quartz ± feldspar veins cutting across the Nuweibi granite host only cassiterite disseminations. Microscopically, quartz and alkali-feldspar are the essential mineral constituents of Nuweibi granite, with minor mica (muscovite + rare biotite), while cassiterite, columbite–tantalite, zircon, allanite, beryl, tourmaline, titanite, and fluorite are accessories. Whole-rock geochemistry and micoanalytical data together with laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) dating of zircon and columbite have been used to constrain the evolution of the granite intrusion and associated mineralization. The Nuweibi granite is weakly peraluminous with extremely low MgO, CaO, TiO2, P2O5, Ba, and Sr contents and elevated Sn, Ta, Nb, and Rb contents. The REE patterns exhibit distinct tetrad effects, as well as negative Eu and Y anomalies. Also, the bulk rock Zr/Hf ratios are consistently < 10. The Nd isotopic system is disturbed and εNd values suggest a juvenile mantle and/or Neoproterozoic crustal source. The U–Pb system in zircon is disturbed and leaked continuously, while the U–Pb age of columbite is ~ 620 Ma. The geochemical and isotopic systematics of the Nuweibi intrusion reflect very advanced degree of fractionation combined with late magmatic fluid overprint which redistributed Sn and other mobile elements, while Ta still characterizes the igneous system.


Nuweibi Rare-metal granite Isotopic dating Tin–tantalum 

Supplementary material

12517_2018_4051_MOESM1_ESM.xls (35 kb)
Table 3 U - Pb isotope data on zircon from Nuweibi (XLS 35 kb)
12517_2018_4051_MOESM2_ESM.xls (32 kb)
Table 4 U - Pb isotope data on columbite from Nuweibi (XLS 31 kb)
12517_2018_4051_MOESM3_ESM.xls (30 kb)
Table 5 Previous Sm-Nd studies from famous rare metal granite intrusions (XLS 30 kb)


  1. Abdeen M, Greiling R, Sadek M, Hamad S (2014) Magnetic fabrics and Pan African structural evolution in the Najd Fault corridor in the Eastern Desert of Egypt. J Afr Earth Sci 99:93–108Google Scholar
  2. Abdel-Rahman AM (2006) Petrogenesis of anorogenic peralkaline granitic complexes from Eastern Egypt. Mineral Mag 70:27–50Google Scholar
  3. Abdel-Rahman AM, Doig R (1987) The Rb–Sr geochronological evolution of the Ras Gharib segment of the northern Nubian Shield. Geol Soc Lond 144:577–586Google Scholar
  4. Abu El-Leil I, Mussa MA (1984) Structural factors controlling rare metal occurrences at Igla-Barramiya area, Eastern desert, Egypt. Ann Geol Surv Egypt 14:309–318Google Scholar
  5. Agangi A, Kamenetsky VS, McPhie J (2010) The role of fluorine in the concentration and transport of lithophile trace elements in felsic magmas: insights from the Gawler Range Volcanics, South Australia. Chem Geol 273:314–325Google Scholar
  6. Ali Kh (2003) Geology and radioactivity of Naba-Nuweibi area, Central Eastern Desert, Egypt. Unpub. Ph.D. thesis, Ain Shams University, Cairo, Egypt, 194 pGoogle Scholar
  7. Ali KA, Stern RG, Manton W, Kimura J, Khamees HA (2009) Geochemistry, Nd isotopes and U–Pb SHRIMP zircon dating of Neoproterozoic volcanic rocks from the Central Eastern Desert of Egypt: new insights into the ~750 Ma crust-forming event. Precambrian Res 171:1–22Google Scholar
  8. Ali KA, Moghazi A, Maurice AE, Omar SA, Wang Q, Wilde SA, Moussa EM, Manton WI, Stern RG (2012) Composition, age, and origin of the ~620 Ma Humr Akarim and Humrat Mukbid A-type granites: no evidence for pre-Neoproterozoic basement in the Eastern Desert, Egypt. Int J Earth Sci (Geol Rundsch) 101:1705–1722Google Scholar
  9. Al-Saleh AM, Boyle AP, Musset AE (1998) Metamorphism and 40Ar/39Ar dating of the Halaban Ophiolite and associated units: evidence for two-stage orogenesis in the Arabian Shield. J Geol Soc Lond 155:165–175Google Scholar
  10. Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53:197–214Google Scholar
  11. Asran MHA (1985) Geology, petrography and geochemistry of the apogranites at Nuweibi and Abu Dabbab areas, Eastern desert, Egypt. M Sc thesis, Assiut University, EgyptGoogle Scholar
  12. Ballouard C, Poujol M, Boulvais P, Branquet Y, Tartèse R, Vigneresse JL (2016) Nb-Ta fractionation in peraluminous granites: a marker of the magmatic-hydrothermal transition. J Geol 44(3):231–223Google Scholar
  13. Bau M (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib Mineral Petrol 123:323–333Google Scholar
  14. Be’eri-Shlevin Y, Katzir Y, Blichert-Toft J, Kleinhanns IC, Whitehouse MJ (2010) Nd–Sr–Hf–O isotope provinciality in the northernmost Arabian–Nubian Shield: implications for crustal evolution. Contrib Mineral Petrol 160:181–201Google Scholar
  15. Black R, Lié́geois JP (1993) Cratons, mobile belts, alkaline rocks and continental lithospheric mantle: the Pan-African testimony. Geol Soc Lond 150:89–98Google Scholar
  16. BregarM, Bauernhofer A, Pelz K, Kloetzli U, Fritz H, Neumayr P (2002) A late Neoproterozoic magmatic core complex in the Eastern Desert of Egypt: emplacement of granitoids in a wrench-tectonic setting. Precambrian Res 118:59–82Google Scholar
  17. Chakoumakos BC, Murakami T, Lumpkin GR, Ewing RC (1987) Alpha-decay-induced fracturing in zircon: the transition from the crystalline to the metamict state. Sci 236:1556–I559Google Scholar
  18. Charoy B, Raimault L (1994) Zr-, Th- and REE-rich biotite differentiates in the A-type granite pluton of Suzhou (Eastern China): the key role of fluorine. J Petrol 35:919–962Google Scholar
  19. Charoy B, Chaussidon M, Le Carlier De Veslud C, Duthoud JL (2003) Evidence of Sr mobility in and around the albite-lepidolite-topaz granite of Beauvoir (France): an in situ ion and electron probe study of secondary Sr-rich phosphates. Contrib Mineral Petrol 145:673–690Google Scholar
  20. Che XD, Wu FY, Wang RC, Gerdes A, Ji WQ, Zhao ZH, Yang JH, Zhu ZY (2015) In situ U–Pb isotopic dating of columbite–tantalite by LA–ICP–MS. Ore Geol Rev 665:978–989Google Scholar
  21. Deliens M, Delhal J, Tarte P (1977) Metamictization and U-Pb systematics—a study by infra red absorption spectrometry of Precambrian zircons. Earth Planet Sci Lett 33:331–344Google Scholar
  22. DePaolo DJ (1981) Neodymium isotopes in the Colorado Front Range and implications for crust formation and mantle evolution in the Proterozoic. Nature 291:193–197Google Scholar
  23. El-Debeiky SA(1994) Petrology, geochemistry and geochronology of the old granite batholith between Safaga and Hurghada, Eastern Desert, Egypt. M.Sc. thesis, Faculty of Science, Ain Shams University, 203 ppGoogle Scholar
  24. Esmaeily D, Nédélec A, Valizadeh MV, Moore F, Cotten J (2005) Petrology of the Jurassic Shah-Kuh granite (eastern Iran), with reference to tin mineralization. J Asian Earth Sci 25:961–980Google Scholar
  25. Finger F, Dörr W, Gerdes A, Gharib M, Dawoud M (2008) U-Pb zircon ages and geochemical data for the Monumental Granite and other granitoid rocks from Aswan, Egypt: implications for the geological evolution of the western margin of the Arabian Nubian Shield. J Mineral Petrol Sci 93:153–183Google Scholar
  26. Fritz H, Wallbrecher E, Khudeir AA, Abu El Ela F, Dallmeyer DR (1996) Formation of Neoproterozoic metamorphic complex during oblique convergence (Eastern Desert, Egypt). J Afr Earth Sci 23:311–329Google Scholar
  27. Fritz H, Dallmeyer DR, Wallbrecher E, Loizenbauer J, Hoinkes G, Neumayr P, Khudeir AA (2002) Neoproterozoic tectonothermal evolution of the Central Eastern Desert, Egypt: a slow velocity tectonic process of core complex exhumation. J Afr Earth Sci 34:137–155Google Scholar
  28. Fritz H, Abdelsalam M, Ali K, Bingen B, Collins A, Fowler A, Ghebreab W, Hauzenberger C, Johnson P, Kusky T, Macey P, Muhongo S, Stern R, Viola G (2013) Orogen styles in the East African Orogen: a review of the Neoproterozoic to Cambrian tectonic evolution. J Afr Earth Sci 86:65–10Google Scholar
  29. Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42(11):2033–2048Google Scholar
  30. Gaafar IM (2014) Geophysical mapping, geochemical evidence and mineralogy for Nuweibi rare metal albite granite, Eastern Desert, Egypt. OJG 4:108–136Google Scholar
  31. Gaffar IM, Ali K (2015) Geophysical and geochemical signature of rare metal granites, Central Eastern Desert, Egypt: implication for tectonic environment. Int J Earth Sci 5:161–179Google Scholar
  32. Geisler T, Schleicher H, Kurtz R, van Bronswijk W, Schleicher H (2003) Experimental hydrothermal alteration of partially metamict zircon. Am Mineral 88:1496–1513Google Scholar
  33. Gerstenberger H (1989) Autometasomatic Rb enrichments in highly evolved granites causing lowered Rb-Sr isochron intercepts. Earth Planet Sci Lett 93:65–75Google Scholar
  34. Goldstein SL, O’Nions RK, Hamilton PJ (1984) A Sm–Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth Planet Sci Lett 70:221–236Google Scholar
  35. Greenberg JK (1981) Characteristics and origin of Egyptian younger granites. Geol Soc Am Bull 92(2):749–840Google Scholar
  36. Hassan MA, Hashad AH (1990) Precambrian of Egypt. In: Said R (ed) The geology of Egypt. Balkema, Rotterdam, pp 201–245Google Scholar
  37. Hassanen MA, Harraz HZ (1996) Geochemistry and Sr- and Nd-isotopic study on rare-metal-beating granitic rocks, central Eastern Desert, Egypt. Precambrian Res 80:1–22Google Scholar
  38. Helba H, Trumbull RB, Morteani G, Khalil SO, Arslan A (1997) Geochemical and petrographic studies of Ta mineralization in the Nuweibi albite granite complex, Eastern Desert, Egypt. Mineral Deposits 32:164–179Google Scholar
  39. Iber W (1999) The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochim Cosmochim Acta 63:489–508Google Scholar
  40. Jahn S, Matheis G, Mohammed FH, Tamish MO, Shalaby I (1993) Rare-metal province Central Eastern Desert, Egypt—III geochemical indicators of rare-metal potentials. In: Thorweihe U, Schandelmeier H (eds) Geoscientific research in northeast Africa. Balkema, Rotterdam, pp 489–494Google Scholar
  41. Jahn B, Wu F, Capdevila R, Martineau F, Zhao Z, Wang Y (2001) Highly evolved juvenile granites with tetrad REE patterns: the Woduhe and Baerzhe granites from the Great Xing’an Mountains in NE China. Lithos 59:171–198Google Scholar
  42. Johnson PR (1998) The structural geology of the Samran Shayban area, Kingdom of Saudi Arabia: Saudi Arabian Deputy Ministry for Mineral Resources, Technical Report USGS- TR- 98-2, 45pGoogle Scholar
  43. Johnson PR, Andresen A, Collins AS, Fowler AR, Fritz H, Ghebrab W, Kusky T, Stern RJ (2011) Late Cryogenian–Ediacaran history of the Arabian–Nubian Shield: a review of depositional, plutonic, structural, and tectonic event in the closing stages of the northern East African Orogen. J Afr Earth Sci 61:167–232Google Scholar
  44. Küster D (2009) Granitoid-hosted Ta mineralization in the Arabian–Nubian Shield: ore deposit types, tectono-metallogenetic setting and petrogenetic framework. Ore Geol Rev 35:68–86Google Scholar
  45. Lehmann B (1990) Metallogeny of tin. Springer, BerlinGoogle Scholar
  46. Lehmann B, Halder S, Munana JR, Ngizimana J, Biryabarema M (2014) The geochemical signature of rare-metal pegmatites in Central Africa: magmatic rocks in the Gatumba tin–tantalum mining district, Rwanda. J Geochem Explor 144:528–538Google Scholar
  47. Li GM, Li JX, Qin KZ, Duo J, Zhang TP, Xiao B, Zhao JX (2012) Geology and hydrothermal alteration of the Duobuza Gold-rich porphyry copper district in the Bangongco Metallogenetic Belt, northwestern Tibet. Resour Geol 62:99–118Google Scholar
  48. Li GM, Qin KZ, Li JX, Evans NJ, Zhao JX, Cao MJ, Zhang XN (2017) Cretaceous magmatism and metallogeny in the Bangong–Nujiang metallogenic belt, central Tibet: evidence from petrogeochemistry, zircon U–Pb ages, and Hf–O isotopic compositions. Gondwana Res 41:110–127Google Scholar
  49. Lin J, Liu YS, Yang YH, Hu ZC (2016) Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios. Phys Chem Earth A 1:5–27Google Scholar
  50. Linnen RL (1998) Depth of emplacement, fluid provenance and metalllogeny in granitic terranes: a comparison of western Thailand with other tin belts. Mineral Deposits 33:461–476Google Scholar
  51. Liu SB, Wang DH, Chen YC, Li JK, Ying LJ, Xu JX, Zeng ZL (2008) 40Ar/39Ar ages of muscovite from different types of tungsten-bearing quartz veins in the Chong-Yu-You concentrated mineral area in Gannan region and its geological significance. Acta Geol Sin 82:932–940 (in Chinese with English abstract)Google Scholar
  52. Loizenbauer J,Wallbrecher E, Fritz H, Neumayr P, Khudeir AA, Kloetzli U (2001) Structural geology, single zircon ages and fluid inclusion studies of the Meatiq metamorphic core complex: implications for Neoproterozoic tectonics in the Eastern Desert of Egypt. Precambrian Res 110:357–383Google Scholar
  53. Ludwig KR (2008) User’s manual for Isoplot/Ex version 3.70: a geochronology toolkit for Microsoft Excel: No. 4. Berkeley Geochronological Center, Special Publication, p 1–76.
  54. Maniar PD, Piccoli PM (1989) Tectonic discriminations of granitoids. Geol Soc Am Bull 101:635–643Google Scholar
  55. Manning D (1981) The effect of fluorine on liquidus phase relationships in the system Qz–Ab–Or with excess water at 1 kb. Contrib Mineral Petrol 76:206–215Google Scholar
  56. Masuda A, Kawakami O, Dohmoto Y, Takenaka T (1987) Lanthanide tetrad effects in nature: two mutually opposite types, W and M. Geochem J 21:119–124Google Scholar
  57. Matheis G (1992) Structural reactivation and rare-metal enrichment: case studies from Nigeria and Egypt. Zentralbl Geol Paläont Teil I:2661–2673 (in German)Google Scholar
  58. Melcher F, Graupner T, Gäbler HE, Sitnikova M, Henjes-Kunst F, Oberthür T, Gerdes A, Dewaele S (2015) Tantalum–(niobium–tin) mineralisation in African pegmatites and rare metal granites: constraints from Ta–Nb oxide mineralogy, geochemistry and U–Pb geochronology. Ore Geol Rev 64:667–719Google Scholar
  59. Mezger K, Krogstad EJ (1997) Interpretation of discordant U-Pb zircon ages: an evaluation. J Metamorph Geol 15:127–140Google Scholar
  60. Moghazi AM, Ali KA, Wilde SA, Zhou Q, Andersen T, Andresen A, Abu El- Enen MM, Stern RJ (2012) Geochemistry, geochronology, and Sr–Nd isotopes of the Late Neoproterozoic Wadi Kid volcano-sedimentary rocks, southern Sinai, Egypt: implications for tectonic setting and crustal evolution. Lithos 154:47–165Google Scholar
  61. Moghazi AM, Iaccheri LM, Bakhsh BA, Kotov AB, Ali KA (2015) Sources of rare-metal-bearing A-type granites from Jabel Sayed complex, Northern Arabian Shield, Saudi Arabia. J Asian Earth Sci 107:244–258Google Scholar
  62. Mohamed FH (1994) Rare metal-bearing and barren granites, Eastern Desert of Egypt: geochemical characteristics and metallogenetic aspects. J Afr Earth Sci 17:525–539Google Scholar
  63. Mohamed AM (2012) Immiscibility between silicate magma and aqueous fluids in Egyptian rare-metal granites: melt and fluid inclusions study. Arab J Geosci 6–10:4021–4033Google Scholar
  64. Monecke T, Kempe U, Monecke J, Sala M, Wolf D (2002) Tetrad effect in rare earth element distribution patterns: a method of quantification with application to rock and mineral samples from granite-related rare metal deposits. Geochim Cosmochim Acta 66:1185–1196Google Scholar
  65. Morsey MA, Mohamed FH (1992) Geochemical characteristics and petrogenetic aspects of Muelha tin-specialized granite, Eastern Desert, Egypt. Bull Fac Sci, Alex Univ 32(A):502–515Google Scholar
  66. Moussa EM, Stern RJ, Manton WI, Ali KA (2008) SHRIMP zircon dating and Sm/Nd isotopic investigations of Neoproterozoic granitoids, Eastern Desert, Egypt. Precambrian Res 160:341–356Google Scholar
  67. Naim GM, El Melegy AT, Soliman K (1996) Tantalum-niobium-tin mineralization in Central Eastern Desert, Egypt. Rev Proc Geol Assoc Surv, Egypt, pp 599–622Google Scholar
  68. Nasdala L, Irmer G, Wolf D (1995) The degree of metamictization in zircons: a Raman spectroscopic study. Eur J Mineral 7:471–478Google Scholar
  69. Nolte N, Kleinhanns IC, Baero W, Hansen BT (2011) Petrography and whole-rock geochemical characteristics of Västervik granitoids to syenitoids, southeast Sweden. Constraints on petrogenesis and tectonic setting at the southern margin of the Svecofennian domain. J Sweden Geol Soc 133:173–196Google Scholar
  70. Noweir AM, Sewifi BM, Abu El Ela AM (1990) Geology, petrography, geochemistry and petrogenesis of the Egyptian younger granites. Qatar Univ Sci Bull 10:363–393Google Scholar
  71. Pälchen W, Rank G, Lang H, Tischendorf G (1987) Regionale Clarkewerte Moglichkeiten und Grenzen ihrer Anwendung am Beispel des Erzgebirges (DDR). Chem Erde 47:1–17Google Scholar
  72. Pallister JS, Stacey JS, Fischer LB, Premo WR (1988) Precambrian ophiolites of Arabia: geologic setting, U–Pb geochronology, Pb isotope characteristics, and implications for continental accretion. Precambrian Res 38:1–54Google Scholar
  73. Pan Y, Fleet ME (1996) Rare earth element mobility during prograde granulite facies metamorphism: significance of fluorine. Contrib Mineral Petrol 123:251–262Google Scholar
  74. Patchett PJ, Chase CG (2002) Role of transform continental margins in major crustal growth episodes. J Geol 30:39–42Google Scholar
  75. Pearce JA (1996) Sources and settings of granitic rocks. Episodes 19:120–125Google Scholar
  76. Pearce JA, Harris NW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983Google Scholar
  77. Pollard PJ (1989) Geologic characteristics and genetic problems associated with the development of granite-hosted deposits of tantalum and niobium. In: Möller P, Černý P, Saupe F (eds) Lanthanides, tantalum and niobium. Springer, New York, pp 240–256Google Scholar
  78. Riad AM (1979) Geology and petrology on some apogranite occurrence, Nuweibi area, Eastern Desert, Egypt. M Sc thesis, Al Azhar University, Cairo, EgyptGoogle Scholar
  79. Romer R (2003) Alpha-recoil in U-Pb geochronology: effective sample size matters. Contrib Mineral Petrol 145:481–491Google Scholar
  80. Sabet AH, Tsogoev V (1973) Problems of geological and economic evaluation of tantalum deposits in apogranites during stages of prospection and exploration. Ann Geol Surv Egypt V.III:87–107Google Scholar
  81. Sami M, Ntaflos T, Farahat ES, Mohamed HA, Ahmed AF, Hauzenberger C (2017) Mineralogical, geochemical and Sr-Nd isotopes characteristics of fluorite-bearing granites in the Northern Arabian-Nubian Shield, Egypt: constraints on petrogenesis and evolution of their associated rare metal mineralization. Ore Geol Rev 88:1–22Google Scholar
  82. Schwartz MO (1992) Geochemical criteria for distinguishing magmatic and metasomatic albite-enrichment in granitoids examples from the Ta-Li granite Yichun (China) and the Sn-W deposit Tikus (Indonesia). Mineral Deposits 27:101–108Google Scholar
  83. Shalaby A, Stiiwe K, Makroum F, Fritz H, Kebede T, Klotzli V (2005) TheWadi Mubarak belt, Eastern Desert of Egypt: a Neoproterozoic conjugate shear system in the Arabian–Nubian Shield. Precambrian Res 136:27–50Google Scholar
  84. Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plesovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem Geol 249:1–35Google Scholar
  85. Stacey JS, Agar RA (1985) U-Pb isotopic evidence for the accretion of a continental micro-plate in the Zalm region of the Saudi Arabian Shield. J Geol Soc Lond 142:1189–1203Google Scholar
  86. Stern RJ (1985) The Najid Fault System, Saudia Arabia and Egypt: a Late Precambrian rift related transform system? Tectonics 4:497–511Google Scholar
  87. Stern RJ (1994) Arc assembly and continental collision in the Neoproterozoic East African Orogen: implications for the consolidation of Gondwanaland. Annu Rev Earth Planet Sci 22:319–351Google Scholar
  88. Stoeser DB, Camp VE (1985) Pan-African micro plate accretion of the Arabian shield. Geol Soc Am Bull 96:817–826Google Scholar
  89. Streckeisen A, Le Maitre RW (1979) A chemical approximation to the modal QAPF classification of the igneous rocks. Neues Jahrbuch für Mineralogie – Abhandlungen 136:169–206Google Scholar
  90. Tu LQ, Ma YF, Shi SR, Yin JF, Tu JF (2011) Geological and wall-rock alteration characteristics of Donggebi deposit, Hami City. Xinjiang Geol 29:433–436 (in Chinese with English abstr.)Google Scholar
  91. Vail JR (1985) Pan-African (Late Precambrian) tectonic terrains and the reconstruction of the Arabian–Nubian shield. J Geol 13:839–842Google Scholar
  92. Webster JD, Holloway JR, Herving RL (1989) Partitioning of lithophile trace elements between H2O and H2O + CO2 fluids and topaz rhyolite melt. Econ Geol 84:116–134Google Scholar
  93. Webster JD, Thomas R, Förster HJ, Seltmann R, Tappen C (2004) Geochemical evolution of halogen-enriched granite magmas and mineralizing fluids of the Zinnwald tin–tungsten mining district, Erzgebirge, Germany. Mineral Deposits 39:452–472Google Scholar
  94. Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol 95:407–419Google Scholar
  95. Wiedenbeck M, Alle P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newslett 19:1–23Google Scholar
  96. Wu FY, Sun DY, Li HM, Jahn BM, Wilde S (2002) A-type granites in north-eastern China: age and geochemical constraints on their petrogenesis. Chem Geol 187:143–173Google Scholar
  97. Yokart B, Barr SM, Williams-Jones AE, Macdonald AS (2003) Late-stage alteration and tin-tungsten mineralization in the Khuntan Batholith, northern Thailand. J Asian Earth Sci 21:999–1018Google Scholar
  98. Zaraisky GP, Aksyuk AM, Devyatova VN, Udoratina OV, Chevychelov YV (2009) The Zr/Hf ratio as a fractionation indicator of rare-metal granites. J Petrol 17–1:25–45Google Scholar
  99. Zhu J, Li R, Li F, Xiong F, Huang X (2001) Topaz-albite granites and rare metal mineralization in the Limu District, Guangxi Province, southeast China. Mineral Deposits 36:393–405Google Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  • Ashraf Emam
    • 1
  • Basem Zoheir
    • 2
    • 3
  • Abdelhady Mohammed Radwan
    • 1
    • 4
    Email author
  • Bernd Lehmann
    • 4
  • Rongqing Zhang
    • 5
  • Sherif Fawzy
    • 1
  • Nicole Nolte
    • 6
  1. 1.Department of Geology, Faculty of ScienceAswan UniversityAswanEgypt
  2. 2.Department of Geology, Faculty of ScienceBenha UniversityBenhaEgypt
  3. 3.Institute of GeosciencesKiel UniversityKielGermany
  4. 4.Mineral ResourcesTechnical University of ClausthalClausthal-ZellerfeldGermany
  5. 5.CAS Key Laboratory of Mineralogy and MetallogenyChinese Academy of SciencesGuangzhouChina
  6. 6.Geoscience Center Göttingen, Isotope GeologyGöttingenGermany

Personalised recommendations