Advertisement

Arabian Journal of Geosciences

, 11:558 | Cite as

Deposition in a changing paleogulf: evidence from the Pliocene–Quaternary sedimentary succession of the Nile Delta, Egypt

  • Emad Sallam
  • Bahay Issawi
  • Refaat Osman
  • Dmitry Ruban
Original Paper
  • 105 Downloads

Abstract

Sedimentary complexes of ancient gulfs provide valuable information about paleoenvironmental dynamics. The study of several Pliocene–Pleistocene sections allowed reconstruction of the regional stratigraphical framework in the southwestern fringes of the Nile Delta. The Kafr El-Shiekh, the Gar El-Muluk, and the Kom El-Shelul formations of the Zanclean Age and the Wastani Formation of the Piacenzian Age constitute the Pliocene sedimentary succession in the study area. The establishment of 11 facies types related to 5 facies associations coupled with the results of the stratigraphical study indicate the existence of a paleogulf corresponding to the modern delta and lower valley of the Nile. This Nile Paleogulf appeared and reached its maximum spatial extent in the beginning of the Pliocene. Then, it retreated gradually and disappeared before the end of this epoch when alluvial sedimentation reestablished. There was significant flux of siliciclastic material to the study area. The Zanclean Flood in the Mediterranean Sea allowed marine incursion in the study area where the river valley incised during the precedent Messinian Salinity Crisis. Regional tectonic uplift and filling of the accommodation space with siliciclastic material from the eroded land were the main controls on the paleogulf evolution. Strengthened glaciation triggered global sea level fall, and alluvial deposition dominated the study area in the late Pliocene–Pleistocene.

Keywords

Facies association Lithostratigraphy Sediment provenance Late Cenozoic Nile Delta 

Notes

Acknowledgements

The authors gratefully thank A.M. Al-Amri (Saudi Arabia) and B. Bádenas (Spain) for their editorial support, the anonymous reviewer for constructive suggestions, and S.M. Ahmed (Egypt) for his help during the fieldwork.

References

  1. Abd El Shafy E, Metwally MHM (1986) Stratigraphy of the Pliocene series in the northern part of the Nile Valley, Egypt, 1- Macrostratigraphy, Bull Fac Sci Zagazig Univ 8:106–141Google Scholar
  2. Abd El Shafy E, Hamza F, Metwally MHM (1987) Stratrigaphy of the Pliocene series in the northern part of the Nile Valley, Egypt. 2- Lithostratigraphy and paleoenvironments: Bull Fac Sci, Zagazig Univ 9:426–456Google Scholar
  3. Abdallah AY (1970) Petrology of some Pliocene recent rocks in Wadi El Natrun–Beni Suef area, Egypt. M.Sc. Thesis, Fac. Sci. Ain Shams Univ., 187pGoogle Scholar
  4. Abdelsalam MG (2018) The Nile’s journey through space and time: a geological perspective. Earth Sci Rev 177:742–773CrossRefGoogle Scholar
  5. Adams CG, Benson RH, Kidd RB, Ryan WBF, Wright RC (1977) The Messinian Salinity Crisis and evidence of late Miocene eustatic changes in the world ocean. Nature 269:383–386CrossRefGoogle Scholar
  6. Adamson DA, Gasse F, Street FA, Williams MAJ (1980) Late Quaternary history of the Nile. Nature 288:50–55CrossRefGoogle Scholar
  7. Baloge P-A, Brosse R (1993) New stratigraphical and paleogeographical data on lowermost Liassic from southwest of the Paris Basin; evidence of an Hettangian paleogulf in Anjou. Geologie de la France 1:57–60Google Scholar
  8. Barr FT, Walker BR (1973) Late Tertiary channel system in northern Libya. In: Ryan W, Hsu K (eds) Initial reports of the Deep Sea Drilling Project, vol 13. U.S. Government Printing Office, Washington, pp 1244–1251Google Scholar
  9. Blanckenhorn M (1921) Handbuch der regionalen geologie, bd., vii, abt. 9, Heft 23, Agypten. Heidelberg, 244pGoogle Scholar
  10. Catuneanu O, Khalifa MA, Wanas HA (2006) Sequence stratigraphy of the Lower Cenomanian Bahariya Formation, Bahariya Oasis, Western Desert, Egypt. Sediment Geol 190:121–137CrossRefGoogle Scholar
  11. Chumakov IS (1967) Pliocene and Pleistocene deposits of the Nile Valley in Nubia and Upper Egypt (in Russian). Trans Geol Inst Acad Sci (USSR) 170:1–110Google Scholar
  12. Chumakov IS (1968) Pliocene ingression into the Nile Valley according to new data. In: Butzer KW, Hansen CL (eds) The desert and river in Nubia. University of Wis Consin press, Madison, pp 521–523Google Scholar
  13. Chumakov IS (1973a) Geological history of the Mediterranean at the end of the Miocene—the beginning of the Pliocene according to new data. In: Ryan W, Hsü K et al (eds) Initial reports of deep sea drilling project, vol 13. U.S. Government Printing Office, Washington 1241pGoogle Scholar
  14. Chumakov IS (1973b) Pliocene and Pleistocene deposits of the Nile Valley in Nubia and Upper Egypt. In: Ryan W, Hsü K et al (eds) Intial reports of deep sea drilling project, vol 13. U.S. Government Printing Office, Washington 1242pGoogle Scholar
  15. Conolly JR (1965) The occurrence of polycrystallinity and undulatory extinction in quartz in sandstones. J Sediment Petrol 35:116–135Google Scholar
  16. Didyke BM, Simoneit BRT, Brassell SC, Eglinton G (1978) Organic geochemical indicators of paleoenvironmental conditions of sedimentation. Nature 272:216–222CrossRefGoogle Scholar
  17. Dubar M (1988) The Holocene coastal transgressive series of the Nice area, a sedimentary model. Bull Assoc Francaise pour l'Etude du Quaternaire 33:11–15CrossRefGoogle Scholar
  18. Duggen S, Hoernie K, Van den Bogaard P, Rupke L, Morgan JP (2003) Deep roots of the Messinian Salinity Crisis. Nature 422:602–606CrossRefGoogle Scholar
  19. Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. In: Ham WE (ed) Classification of carbonate rocks, vol 1. Okla. A.A.P.G. Mem., Tulsa, pp 108–121Google Scholar
  20. Dwyer GS, Chandler MA (2009) Mid-Pliocene sea level and continental ice volume based on coupled benthic Mg/Ca palaeotemperatures and oxygen isotopes. Philos Trans R Soc A Math Phys Eng Sci 367:157–168CrossRefGoogle Scholar
  21. Embry AF, Kolven JE (1972) A late Devonian reef tract on northeastern banks Island, Northwest territories. Bull Can Petrol Geol 19:73–781Google Scholar
  22. Fielding L, Najman Y, Millar I, Butterworth P, Garzanti E, Vezzoli G, Barfod D, Kneller B (2018) The initiation and evolution of the River Nile. Earth Planet Sci Lett 489:166–178CrossRefGoogle Scholar
  23. Flügel E (2004) Microfacies of carbonate rocks: analysis, interpretation and application. Springer, Berlin 976 pCrossRefGoogle Scholar
  24. Folk RL (1968) Petrology of sedimentary rocks. Hemphills Publishing Co., Texas 70 pGoogle Scholar
  25. Fourtau R (1920) Echinodermes Neogene de L’Egypt; catalogue des invertebres follils d' Egypt: Terrains Teriates; pt. 2: Geol. Surv. Egypt, Cairo 101pGoogle Scholar
  26. Garcia-Castellanos D, Estrada F, Jimenez-Munt I, Gorini C, Fernandez M, Verges J, De Vicente R (2009) Catastrophic flood of the Mediterranean after the Messinian Salinity Crisis. Nature 462:778–781CrossRefGoogle Scholar
  27. Gargani J, Rigollet C (2007) Mediterranean Sea level variations during the Messinian Salinity Crisis. Geophys Res Lett 34:L10405CrossRefGoogle Scholar
  28. Gautier F, Clauzon G, Suc J-P, Cravatte J, Violanti D (1994) Age and duration of the Messinian Salinity Crisis. C R Acad Sci Ser II: Sci Terre Planets 318:1103–1109Google Scholar
  29. Geologic Map of Egypt (1981) Scale 1: 2,000,000. CairoGoogle Scholar
  30. Govers R (2009) Choking the Mediterranean to dehydration: the Messinian Salinity Crisis. Geology 37:167–170CrossRefGoogle Scholar
  31. Gradstein FM, Ogg JG, Schmitz M, Ogg G (eds) (2012) The geologic time scale 2012, vol 1–2. Elsevier, Oxford 1176pGoogle Scholar
  32. Guiraud R, Bosworth W, Thierry J, Delplanque A (2005) Phanerozoic geological evolution of Northern and Central Africa: an overview. J Afr Earth Sci 43:83–143CrossRefGoogle Scholar
  33. Hamdan MA (1992) Pliocene and Quaternary deposits of Beni suef–East Fayium area and their relation to the geological evolution of the River Nile. Ph. D. Thesis, Cairo Univ., 274pGoogle Scholar
  34. Hamza F (1972) Study on some Pliocene fauna from Egypt. M. Sc. Thesis, Fac, Sci., Ain Shams UnivGoogle Scholar
  35. Hamza F (1983) Post-Pliocene transgressive phase along the northern part of the Nile Valley, Egypt, N Jb Geol Paleont Mh, H 6Google Scholar
  36. Hamza F, Metwally MHM (1984) Lithstratigraphic contribution to the Pliocene rocks at the western edge of the Nile–Fayium divide, Egypt. Bull. Fac. Sci. Zagazig Univ., Egypt, 6, no. 6Google Scholar
  37. Haq BU, Al-Qahtani AM (2005) Phanerozoic cycles of sea-level change on the Arabian platform. GeoArabia 10:127–160Google Scholar
  38. Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235:1156–1167CrossRefGoogle Scholar
  39. Harms JC, Wray JL (1990) Nile Delta. In: Said R (ed) The gelogy of Egypt. Balkema, chapter 17, pp 329–343Google Scholar
  40. Hassan MY, Issawi B, Zaghloul EA (1978) Geology of the area east of Beni Suef, Eastern Desert, Egypt. Ann Geol Surv Egypt 8:129–162Google Scholar
  41. Hsü KJ (1978) The Messinian Salinity Crisis—evidence of Late Miocene eustatic changes in the world ocean. Naturwissenschaften 65:151CrossRefGoogle Scholar
  42. Hsü K, Cita MB, Ryan WBF (1973) The origin of the Mediterranean evaporates. In: Ryan W, Hsü K et al (eds) Initial reports of deep sea drilling project, vol 13. U.S. Government Printing Office, Washington, pp 1203–1231Google Scholar
  43. Hubert JF (1971) Heavy minerals. In: Carver RE (ed) In procedures in sedimentary petrology. Willey interscience, New York 476 pGoogle Scholar
  44. Huerta P, Armenteros I (2005) Calcrete and palustrine assemblages on a distal alluvial-floodplain: a response to local subsidence (Miocene of the Duero Basin, Spain). Sediment Geol 177:235–270CrossRefGoogle Scholar
  45. Issawi B, Mc Cauley J (1992) The Cenozoic rivers of Egypt the Nile problem. In: The followers of Horus (Eds. R. Friedman and B. Adams), Egypt. Studies Assoc. Publi., no. 2, Oxbow Monograph, 20, 121–146Google Scholar
  46. Issawi B, Mc Cauley J (1993) The Cenozoic landscape of Egypt and its river system. Ann Geol Surv Egypt 19:359–384Google Scholar
  47. Issawi B, Sallam ES (2017) Rejuvenation of dry palaeochannels in arid regions in NE Africa: a geological and geomorphological study. Arab J Geosci 10:14.  https://doi.org/10.1007/s12517-016-2793-z CrossRefGoogle Scholar
  48. Issawi B, Hassan MY, Osman R (1978) Geological studies in the area of Kom Ombo in Eastern Desert, Egypt. Ann Geol Surv Egypt 8:187–235Google Scholar
  49. Issawi B, Ahmed SM, Osman R, Sallam ES (2005) Studies on the Pliocene—Quaternary sediments in the western fringes of the Nile Delta—lower Nile Valley stretch, Egypt. Sedimentol Egypt 13:277–296Google Scholar
  50. Issawi B, Sallam E, Zaki SR (2016) Lithostratigraphic and sedimentary evolution of the Kom Ombo (Garara) sub-basin, southern Egypt. Arab J Geosci 9:420.  https://doi.org/10.1007/s12517-016-2440-8 CrossRefGoogle Scholar
  51. Issawi B, Sallam ES, Salem M (2018) Tectonostratigraphic and sedimentary evolution of the Ubur–Orabi sub-basin, southeast Nile Delta, Eypt. Carbonates Evaporites.  https://doi.org/10.1007/s13146-017-0392-z
  52. Khonde NN, Maurya DM, Chamyal LS (2017) Late Pleistocene–Holocene clay mineral record from the Great Rann of Kachchh basin, Western India: implications for palaeoenvironments and sediment sources. Quat Int 443:86–98CrossRefGoogle Scholar
  53. Kirkham C, Cartwright J, Hermanrud C, Jebsen C (2018) The formation of giant clastic extrusions at the end of the Messinian Salinity Crisis. Earth Planet Sci Lett 482:434–445CrossRefGoogle Scholar
  54. Krijgsman W, Hilgen FJ, Raffi I, Sierro FJ, Wilson DS (1999) Chronology, causes and progression of the Messinian Salinity Crisis. Nature 400:652–655CrossRefGoogle Scholar
  55. Leila M, Moscariello A, Segvic B (2018) Geochemical constraints on the provenance and depositional environment of the Messinian sediments, onshore Nile Delta, Egypt: implications for the late Miocene paleogeography of the Mediterranean. J Afr Earth Sci 143:215–241CrossRefGoogle Scholar
  56. Loget N, Van Den Driessche J, Davy P (2005) How did the Messinian Salinity Crisis end? Terra Nova 17:414–419CrossRefGoogle Scholar
  57. Maria AM, Heinz FW (1992) Heavy minerals in colours. Chapman & Hall, London 147 pGoogle Scholar
  58. Marzocchi A, Flecker R, van Baak CGC, Lunt DJ, Krijgsman W (2016) Mediterranean outflow pump: an alternative mechanism for the Lago-mare and the end of the Messinian Salinity Crisis. Geology 44:523–526CrossRefGoogle Scholar
  59. Mayer-Eymer K (1898) Systematiches verzeichniss der fauna des unteren Sahrianum (marine quarter) der umgegend von Kairo, nebst Beschereibung der neuen Arten. Paleontographica, stuttgrat 30:60–90Google Scholar
  60. Miall AD (1978) Lithofacies types and vertical profile models in braided river deposits, a summary. In: Miall AD (ed) Fluvial sedimentology. Canadian Society Petroleum Geologist Memoir, 5:597–604Google Scholar
  61. Miall AD (1996) The geology of fluvial deposits. Springer-Verlag 582pGoogle Scholar
  62. Miall AD (2010) Alluvial deposits. In: James NP, Dalrymple RW (eds) Facies models 4. Geological Association of Canada, St. John’s Newfoundland, pp 105–137Google Scholar
  63. Miller KG, Kominz MA, Browning JV, Wright JD, Mountain GS, Katz ME, Sugarman PJ, Cramer BS, Christie-Blick N, Pekar SF (2005) The phanerozoic record of global sea-level change. Science 310:1293–1298CrossRefGoogle Scholar
  64. Negri MP (2009) An experimental mapping method by means of fossil mollusk faunas: the Holocene Thai paleogulf. Boll Soc Paleontol Ital 48:41–50Google Scholar
  65. Newton RB (1899) Egyptian newer tertiary shells. Geol Mag 6:352–359CrossRefGoogle Scholar
  66. Nichols G (2009) Sedimentology and stratigraphy. Wiley-Blockwell, Chichester 419pGoogle Scholar
  67. Odin GS (1988) Green marine clays. Dev Sedimentol 45 445pGoogle Scholar
  68. Odin GS, Matter A (1981) De glauconiarum origine. Sedimentology 28:611–641CrossRefGoogle Scholar
  69. Ogg JG, Ogg GM, Gradstein FM (2016) A concise geologic time scale 2016. Elsevier, Amsterdam 234pGoogle Scholar
  70. Pennington BT, Sturt F, Wilson P, Rowland J, Brown AG (2017) The fluvial evolution of the Holocene Nile Delta. Quat Sci Rev 170:212–231CrossRefGoogle Scholar
  71. Perez-Asensio JN, Aguirre J, Jimenez-Moreno G, Schmiedl G, Civis J (2013) Glacioeustatic control on the origin and cessation of the Messinian Salinity Crisis. Glob Planet Chang 111:1–8CrossRefGoogle Scholar
  72. Pettijhon FJ, Potter PE, Siever R (1973) Sand and sandstone. Springer-Verlag New York, Heidelberg 618pCrossRefGoogle Scholar
  73. Pfeiffer M, Le Roux JP, Solleiro-Rebolledo E, Kemnitz H, Sedov S, Seguel O (2011) Preservation of beach ridges due to pedogenic calcrete development in the Tongoy palaeobay, North-Central Chile. Geomorphology 132:234–248CrossRefGoogle Scholar
  74. Platt NH, Wright VP (1992) Palustrine carbonates at the Florida Everglades: towards an exposure index for the freshwater environment. J Sediment Petrol 62:1058–1071Google Scholar
  75. Powers MC (1953) A new roundness scale for sedimentary particles. J Sediment Petrol 23:117–119CrossRefGoogle Scholar
  76. Raymo ME, Mitrovica JX, O’Leary MJ, Deconto RM, Hearty PJ (2011) Departures from eustasy in Pliocene sea-level records. Nat Geosci 4:328–332CrossRefGoogle Scholar
  77. Reineck H (1967) Layered sediments of tidal flats, beaches, and shelf bottoms of the North Sea. Estuaries 83:191–206Google Scholar
  78. Reineck H, Wunderlich F (1968) Classification and origin of flaser and lenticular bedding. Sedimentology 11:99–104CrossRefGoogle Scholar
  79. Rouchy JM, Caruso A, Pierre C, Blanc-Valleron M-M, Bassetti MA (2007) The end of the Messinian Salinity Crisis: evidences from the Chelif Basin (Algeria). Palaeogeogr Palaeoclimatol Palaeoecol 254:386–417CrossRefGoogle Scholar
  80. Rovere A, Raymo ME, Mitrovica JX, Hearty PJ, O’Leary MJ, Inglis JD (2014) The Mid-Pliocene sea-level conundrum: glacial isostasy, eustasy and dynamic topography. Earth Planet Sci Lett 387:27–33CrossRefGoogle Scholar
  81. Roveri M, Manzi V (2006) The Messinian Salinity Crisis: looking for a new paradigm? Palaeogeogr Palaeoclimatol Palaeoecol 238:386–398CrossRefGoogle Scholar
  82. Roveri M, Flecker R, Krijgsman W, Lofi J, Lugli S, Manzi V, Sierro FJ, Bertini A, Camerlenghi A, De Lange G, Govers R, Hilgen FJ, Hubscher C, Meijer PT, Stoica M (2014) The Messinian Salinity Crisis: past and future of a great challenge for marine sciences. Mar Geol 352:25–58CrossRefGoogle Scholar
  83. Roveri M, Gennari R, Lugli S, Manzi V, Minelli N, Reghizzi M, Riva A, Rossi ME, Schreiber BC (2016) The Messinian Salinity Crisis: open problems and possible implications for Mediterranean petroleum systems. Pet Geosci 22:283–290CrossRefGoogle Scholar
  84. Ruban DA (2010) Stratigraphic evidence of a Late Maeotian (Late Miocene) punctuated transgression in the Tanais palaeobay (northern part of the eastern Paratethys, south-west Russia). Geologos 16:169–181Google Scholar
  85. Ruggieri G, Sprovieri R (1976) Messinian Salinity Crisis and its paleogeographical implications. Palaeogeogr Palaeoclimatol Palaeoecol 20:13–21CrossRefGoogle Scholar
  86. Said R (1962) The geology of Egypt. El Sevier, 377pGoogle Scholar
  87. Said R (1971) Explanatory notes to accompany the geological map of Egypt. Egypt Geol Surv 56, 123pGoogle Scholar
  88. Said R (1993) The River Nile: geology, hydrology and utilization. Pergamon Press, New York 320 ppGoogle Scholar
  89. Said R, Bassiouni MA (1958) Calabrian microfossils from Kom El Shelul, Giza, Egypt. Egypt J Geol 2(2)Google Scholar
  90. Sallam E, Wanas HA, Osman R (2015) Stratigraphy, facies analysis and sequence stratigraphy of the Eocene succession in the Shabrawet area (north Eastern Desert, Egypt): an example for a tectonically influenced inner ramp carbonate platform. Arab J Geosci 8(12):10433–10458CrossRefGoogle Scholar
  91. Schlumberger (1984) Well evaluation conference, Egypt. Geol Egypt 1:471–446Google Scholar
  92. Schweinfurth G (1889) Ueber dei kreideregion bei den Pyramiden von Gizeh. Petrm Mitt bd 35:1–2Google Scholar
  93. Segev A, Avni Y, Shahar J, Wald R (2017) Late Oligocene and Miocene different seaways to the Red Sea–Gulf of Suez rift and the Gulf of Aqaba–Dead Sea basins. Earth Sci Rev 171:196–219CrossRefGoogle Scholar
  94. Shukri NM, El Ayouti MK (1953) The mineralogy of Eocene and later sediments in Anqabia area, Cairo – Suez district. Bull Fac Sci Cairo Univ 32:47–58Google Scholar
  95. Suc J-P, Rouchy JM, Ferrandini M, Ferrandini J (2007) The Messinian Salinity Crisis revisited. Geobios 40:231–232CrossRefGoogle Scholar
  96. Tucker ME (1982) Sedimentary Petrology: An introduction. Blackwell Scientific Publications. Geoscience texts, 3 251 pGoogle Scholar
  97. Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell Science, Oxford 482pCrossRefGoogle Scholar
  98. Vai GB (2016) Over half a century of Messinian Salinity Crisis. Boletin Geologico y Minero 127:625–641Google Scholar
  99. Vasiliev I, Mezger EM, Lugli S, Reichart G-J, Manzi V, Roveri M (2017) How dry was the Mediterranean during the Messinian Salinity Crisis? Palaeogeogr Palaeoclimatol Palaeoecol 471:120–133CrossRefGoogle Scholar
  100. Vischer A (1947) Geological reconnaissance survey of the Wadi El-Naturn area, Western Desert, Egypt. Nat Res Cent Cairo, F 12Google Scholar
  101. Wanas HA, Sallam E, Zobaa MK, Li X (2015) Mid-Eocene alluvial-lacustrine succession at Gebel El-Goza El-Hamra (Shabrawet area, NE Eastern Desert, Egypt): facies analysis, sequence stratigraphy and paleoclimatic implications. Sediment Geol 329:115–129CrossRefGoogle Scholar
  102. Wilson JL (1975) Carbonate facies in geologic history. Springer, New York 471pCrossRefGoogle Scholar
  103. Woodward JC, Williams MAJ, Garzanti E, Macklin MG, Marriner N (2015) From source to sink: exploring the quaternary history of the Nile. Quat Sci Rev 130:3–8CrossRefGoogle Scholar
  104. Wright RC (1979) Messinian correlation: salinity crisis. Episodes 3:12–15Google Scholar
  105. Wright R, Cita MB (1979) Geo- and biodynamic effects of the Messinian Salinity Crisis in the Mediterranean. Palaeogeogr Palaeoclimatol Palaeoecol 29:215–222CrossRefGoogle Scholar
  106. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693CrossRefGoogle Scholar
  107. Zaghloul ZM, Andrawis SF, Ayad SN (1979) New contribution to the stratigraphy of the Tertiary sediments of Kafr El-Dawar, well no. 1, NW Nile Delta, Egypt. Ann Geol Surv Egypt 9:292–307Google Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  • Emad Sallam
    • 1
  • Bahay Issawi
    • 2
  • Refaat Osman
    • 1
  • Dmitry Ruban
    • 3
  1. 1.Department of Geology, Faculty of ScienceBenha UniversityBenhaEgypt
  2. 2.Geological Survey of EgyptCairoEgypt
  3. 3.Cherepovets State UniversityCherepovetsRussia

Personalised recommendations