Advertisement

Arabian Journal of Geosciences

, 11:547 | Cite as

Modeling water supply and demand for effective water management allocation in Mazafran basin (north of Algeria)

  • Malika Kahlerras
  • Mohamed Meddi
  • Maroua Benabdelmalek
  • Samir Toumi
  • Djillali Kahlerras
  • Issam Nouiri
Original Paper
  • 91 Downloads

Abstract

The process of securing water supply is one of the biggest problems in the world. Along with the ever-increasing demand for water for different users, water resource management agencies face many challenges, some of which may be an obstacle to achieving sustainability and guaranteeing water for the various sectors of water supply. To face this dilemma, integrated water resources management is the best approach. The region of Tipaza is facing this problem. Through this work the WEAP model is applied to assess and analyze the current and projected balance of water resource management taking into account the different policies and operational factors that can affect the demand up to the year 2050. The results of the simulation showed that a deficit of 18.936Mm3 will be registered in the year 2042. For the years 2043 and 2044, the demand will be of the same order as the supply. For the period 2045 to 2050 a deficit of (3.44Mm3 to 85.48 Mm3) will be recorded in the case of scenario RCP4.5. On the other hand, in the case of the pessimistic scenario RCP8.5, the deficit will start from the year 2025 and will continue until the horizon of the year 2050 with 130.95 Mm3.

Keywords

Water resources management Mitidja Climate change WEAP model Mazafran basin Algeria 

References

  1. Abrishamchi A, Alizadeh A, Tajrishy M (2007) Water resources management scenario analysis in the Karkheh river basin. Iran using the WEAP model Hydrol Sci Technol 23:1–12Google Scholar
  2. Adgolign TB, Srinivasa Rao GVR, Yerramsetty A (2015) Weap modeling of surface water resources allocation in Didessa Sub Basin, West Ethiopia, Sustain Water Res ManagGoogle Scholar
  3. Ait-Ouali A (2007) synthèse Hydrogéologique et vulnérabilité à la pollution du système aquifère quaternaire de la Mitidja (thèse de Magister)Google Scholar
  4. Alazzy A, Haishen L, Yonghua Z (2014) Impact of climate change on evaluation of future water demand in the Euphrates and Aleppo basin Syria. Proceedings ICWRS2014 Bologna Italy.  https://doi.org/10.5194/piahs-364-307-2014CrossRefGoogle Scholar
  5. Barthel R, Jagelke J, Götzinger J, Gaiser T, Printz A (2008) Aspects of choosing appropriate concepts for modeling groundwater resources in regional integrated water resources management Examples from the Neckar Germany and Ouémé catchment Benin. Physics and Chemistry of the Earth, Parts A/B/C 33(1–2):92–114.  https://doi.org/10.1016/j.pce.2007.04.013 CrossRefGoogle Scholar
  6. Brian J, Sebastian V, Larry D, John D, Michael H, David P, David Y (2006) Climate change impacts on water for agriculture in California: a case study in the sacramento valley. White Paper California Climate Change CenterGoogle Scholar
  7. Chinnasamy P, Bharati L, Bhattarai U, Khadka A, Dahal V, Walid S (2015) Impact of planned resource development on current and future water demand in the koshi river basin, nepal, water international,  https://doi.org/10.1080/02508060.2015.1099192 CrossRefGoogle Scholar
  8. Ecrement Y, Seghir B (1971) Etude agro pédologique de la plaine de la Mitidja. Rapport ANRHGoogle Scholar
  9. Flores Lopez F, Yates D, Purkey D (2012) A regional water resource planning model to explore the water-energy nexus in the southeastern United States. Poster Fall Meeting American Geophysical UnionGoogle Scholar
  10. Fonseca F (2008) Effects of tourism in water demand in basin of river Gramame Case study 2008 in Portuguese Master’s thesis University Federal Campina Grande BrazilGoogle Scholar
  11. Fraga C, Medellín Azuara J, Marques GF (2016) Planning for infrastructure capacity expansion of urban water supply portfolios with an integrated simulation-optimization approach. Sustainable Cities and Society Vol 29.  https://doi.org/10.1016/j.scs.2016.11.003 CrossRefGoogle Scholar
  12. Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level. The CORDEX framework WMO Bulletin 58(3):175–183Google Scholar
  13. Habi M, Bensalah F (2009) le problème de l'eau en Algérie: une perception encore peu maîtrisée. Revue HTE 143/144Google Scholar
  14. Hamlat A, (2013) Contribution à la gestion des ressources en eau des bassins versants de l'ouest algérien à l'aide d'un système informatique. PhD thesis UST ORAN Algeria 164Google Scholar
  15. Hermans E, Droogers P, Winsemius H (2008) Groundwater management and exploration package state of the art for Northern China. GMEP Project Future Water Report 74Google Scholar
  16. Hong X, Gua S, Wang L, Yang G, Liu D, Guo H, Wang J, (2016) Evaluating water supply risk in the middle and lower reaches of Hanjiang River basin based on an integrated optimal water resources allocation model. Water 8(9):364CrossRefGoogle Scholar
  17. IPCC (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Stocker, TF, D Qin, GK Plattner, M Tignor, SK Allen, J Boschung, A Nauels, Y Xia, V Bex , PM Midgley. Cambridge University Press Cambridge United Kingdom and New York USAGoogle Scholar
  18. Jacob D, Petersen J, Eggert B et al (2014) EURO CORDEX: new high resolution climate change projections for European impact research. Reg Environ Chang 14(2):563–578.  https://doi.org/10.1007/s10113-013-0499-2 CrossRefGoogle Scholar
  19. Jones C, Giorgi F, Asrar G (2011) The coordinated regional downscaling experiment (CORDEX). An international downscaling link to CMIP5. Clivar Exchanges 16:34–40.  https://doi.org/10.5194/gmd-2016-120 2016CrossRefGoogle Scholar
  20. Kanhu CP, Sarat Chandra K, Rashmita KP (2015) Projections of rainfall and surface temperature from CMIP5 models under RCP4.5 and 8.5 over BIMSTEC countries. EGU General Assembly, held 12–17 April, 2015 in Vienna, Austria. id.556Google Scholar
  21. Karmaoui A, Messouli M, Ifaadassan I, Khebiza MY (2014) A Multidisciplinary approach to assess the environmental vulnerability at local scale in context of climate change ( Pilot Study in Upper Draa Valley, South Morocco), Global Journal of Technology and Optimization, 6 (1)  https://doi.org/10.4172/2229-8711.1000167
  22. Kim SJ, Jun HD, Kim BS, Kim HS (2010a) Evaluation of climate change impacts on the water resource system of the Han-River basin in South Korea for the AR4 SRES A2 Scenario. Center for Hydrology and Ecology, Civil engineering Department, Inha University, Incheon, South KoreaGoogle Scholar
  23. Kim SJ, Jun HD, Kim BS, Kim HS (2010b) Evaluation of climate change impacts on the water resource system of the Han-River basin in South Korea for the AR4 SRES A2 Scenario. Center for Hydrology and Ecology Civil Engineering Department Inha University Incheon South KoreaGoogle Scholar
  24. Kizito F, Douxchamps S, Venot JP (2012) Resilience assessment and modeling of ecosystem services in the Volta basin: towards plausible interventions to enhance livelihoods. poster World Water Week StockholmGoogle Scholar
  25. Lévite H, Sally H, Cour J (2003) Testing water demand management scenarios in a water-stressed basin in South Africa: application of the WEAP model. Phys Chem Earth 28:779–786.  https://doi.org/10.1016/j.pce.2003.08.025 CrossRefGoogle Scholar
  26. Linsen M (2009) Barriers for water about the decision-making process regarding locations for new small dams in the Preto River Basin in the Federal District Brazil. Master’s thesis, Systems Engineering, Policy Analysis and Management, Delft University of Technology, The NetherlandsGoogle Scholar
  27. Majhi S, Pattnayak KC, Pattnayak R (2016) Projections of rainfall and surface temperature over Nabarangpur district using multiple CMIP5 models in RCP 4 5 and 85 scenarios. International Journal of Applied Research 2(3):399–405Google Scholar
  28. McCartney MP, Arranz R (2007) Evaluation of historic, current and future water demand in the Olifants River Catchment, South Africa. Research Report 118, International Water Management Institute (IWMI)Google Scholar
  29. Muzaffar AM, Ahmad UF, Manzoor AR, Muzafar NT, Nisar AK (2014) Assessing water demand and supply for Srinagar City (J&K) India, under changing climatic scenarios using water evaluation and planning model (WEAP). International Journal Of Modern Engineering Research (IJMER) 4(4):18–26Google Scholar
  30. Nadiah N, Firdaus Hum M, Suhaimi AT (2015) Modeling water supply and demand for effective water management allocation in Selangor. Jurnal Teknologi 78(5–5).  https://doi.org/10.11113/jt.v78.8569
  31. Nikulin G, Jones C, Giorgi F, Asrar G, Büchner M, Cerezo-Mota R, Christensen OB, Déqué M, Fernandez J, Hänsler A, van Meijgaard E, Samuelsson P, Sylla MB, Sushamak L (2012) Precipitation climatology in an ensemble of CORDEX Africa regional climate simulations. J Clim 25:6057–6078CrossRefGoogle Scholar
  32. Nouiri I (2011) ALL_WATER_gw Software for Groundwater Resources Management Optimization. Case Study Application: Zeuss Koutine Aquifer, TunisiaGoogle Scholar
  33. Nouiri I, Yitayew M, Maßmann J, Tarhouni J (2015) Multi-objective optimization tool for integrated groundwater management. Water Resour Manag 29(14):5353–5375CrossRefGoogle Scholar
  34. ONS (2008) National office of the Statistics Algeria intern reportGoogle Scholar
  35. Ouled Zaoui S, Snani S, Djebbar Y (2010) Management of water resources at Souk-Ahras region (Algeria). 14th International Water Technology Conference, Cairo, Egypt, pp 599–607Google Scholar
  36. Polpanich OU, Chayanis Krittasudthacheewa (2012) Future challenges in northeast Thailand: the nexus of energy, water and food investments. Abstract, World Water Week: 68–69, Stockholm, (Related Presentation(Related Presentation)Google Scholar
  37. Psomas A, Panagopoulos Y, Konsta D, Mimikou M (2016) Designing water efficiency measures in a catchment in Greece using WEAP and SWAT models. 2nd EWaS International ConferenceGoogle Scholar
  38. République Algérienne Démocratique et Populaire (RADP) (2010) Secondes communications nationales de l’Algérie sur les changements climatiques à la CCNUCC. RADP, Alger, pp 140–167Google Scholar
  39. Rheinheimer DE, Null SE, Viers JH (2016) Climate-adaptive water year typing for instream flow requirements in California’s Sierra Nevada. J Water Resour Plan Manag 142:04016049CrossRefGoogle Scholar
  40. SEI WEAP (2008) Système d’évaluation et de planification des ressources en eau, tutorial: une collection de modules autonomes pour aider à apprendre le logiciel WEAP. Tellus Institute, BostonGoogle Scholar
  41. Suárez J, Muñoz H, Orozco S, Sánchez G, Ritter W, Carreón M, Muñoz M, Treviño J (2009) Gestión Ambiental 18 pp. 49–61Google Scholar
  42. Vonk E (2013) Dam reoperation as an adaptation strategy for shifting patterns of water supply and demand: a case study for the Xin’anjiang Fuchunjiang reservoir cascade China. Master's Thesis, Civil Engineering and Management, University of TwenteGoogle Scholar
  43. Yates D, Sieber J, Purkey DR, Huber Lee A (2005a) WEAP21 a demand, priority, and preference-driven water planning model: part1 model characteristics. Water Int 30(4):487–500CrossRefGoogle Scholar
  44. Yates D, Purkey DR, Sieber J, Huber Lee A, Galbraith H (2005b) Weap21 a demand, priority, and preference-driven water planning model part2 , aiding fresh water ecosystem service evaluation. Water Int 30(4):501–512CrossRefGoogle Scholar
  45. Zeroual A (2016) Évolution du climat du passé récent vers le futur en Algérie. Phd Thesis, ENSH Blida, Algeria, 300Google Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  1. 1.LGEE, Higher National School of HydraulicsBlidaAlgeria
  2. 2.LSTE, National Agronomic Institute of Tunisia (INAT)TunisTunisia

Personalised recommendations