Advertisement

Predicting saturated hydraulic conductivity using particle swarm optimization and genetic algorithm

  • Melika Nematolahi
  • Vahidreza Jalali
  • Majid Hejazi Mehrizi
Original Paper
  • 22 Downloads

Abstract

Soil saturated hydraulic conductivity (Ks) is considered as soil basic hydraulic property, and its precision estimation is a key element in modeling water flow and solute transport processes both in the saturated and vadose zones. Although some predictive methods (e.g., pedotransfer functions, PTFs) have been proposed to indirectly predict Ks, the accuracy of these methods still needs to be improved. In this study, some easily available soil properties (e.g., particle size distribution, organic carbon, calcium carbonate content, electrical conductivity, and soil bulk density) are employed as input variables to predict Ks using a fuzzy inference system (FIS) trained by two different optimization techniques: particle swarm optimization (PSO) and genetic algorithm (GA). To verify the derived FIS, 113 soil samples were taken, and their required physical properties were measured (113 sample points × 7 factors = 791 input data). The initial FIS is compared with two methods: FIS trained by PSO (PSO-FIS) and FIS trained by GA (GA-FIS). Based on experimental results, all three methods are compared according to some evaluation criteria including correlation coefficient (r), modeling efficiency (EF), coefficient of determination (CD), root mean square error (RMSE), and maximum error (ME) statistics. The results showed that the PSO-FIS model achieved a higher level of modeling efficiency and coefficient of determination (R2) in comparison with the initial FIS and the GA-FIS model. EF and R2 values obtained by the developed PSO-FIS model were 0.69 and 0.72, whereas they were 0.63 and 0.54 for the GA-FIS model. Moreover, the results of ME and RMSE indices showed that the PSO-FIS model can estimate soil saturated hydraulic conductivity more accurate than the GA-FIS model with ME = 10.4 versus 11.5 and RMSE = 5.2 versus 5.5 for PSO-FIS and GA-FIS, respectively.

Keywords

Fuzzy inference system Genetic algorithm Particle swarm optimization Saturated hydraulic conductivity 

References

  1. Agyare WA, Park SJ, Vlek PLG (2007) Artificial neural network estimation of saturated hydraulic conductivity. Vadose Zone J 6(2):423–431CrossRefGoogle Scholar
  2. Aimrun W, Amin MSM, Eltaib SM (2004) Effective porosity of paddy soils as an estimation of its saturated hydraulic conductivity. Geoderma 121(3):197–203CrossRefGoogle Scholar
  3. Al Majou H et al (2008) The use of in situ volumetric water content at field capacity to improve the prediction of soil water retention properties. Can J Soil Sci 88(4):533–541CrossRefGoogle Scholar
  4. Armaghani DJ, Momeni E, Abad SVANK, Khandelwal M (2015) Feasibility of ANFIS model for prediction of ground vibrations resulting from quarry blasting. Environ Earth Sci 74:2845–2860CrossRefGoogle Scholar
  5. Baker L, Ellison D (2008) Optimisation of pedotransfer functions using an artificial neural network ensemble method. Geoderma 144(1):212–224CrossRefGoogle Scholar
  6. Bezdek JC, Ehrlich R, Full W (1984) FCM: the fuzzy c-means clustering algorithm. Comput Geosci 10(2–3):191–203CrossRefGoogle Scholar
  7. Boeringer DW, Werner DH (2004) Particle swarm optimization versus genetic algorithms for phased array synthesis. IEEE Trans Antennas Propag 52(3):771–779CrossRefGoogle Scholar
  8. Børgesen CD, Schaap MG (2005) Point and parameter pedotransfer functions for water retention predictions for Danish soils. Geoderma 127(1):154–167CrossRefGoogle Scholar
  9. Børgesen CD, Iversen BV, Jacobsen OH, Schaap MG (2008) Pedotransfer functions estimating soil hydraulic properties using different soil parameters. Hydrol Process 22(11):1630–1639CrossRefGoogle Scholar
  10. Chapuis RP (2012) Predicting the saturated hydraulic conductivity of soils: a review. Bull Eng Geol Environ 71(3):401–434CrossRefGoogle Scholar
  11. Dashtaki SG, Homaee M, Khodaverdiloo H (2010) Derivation and validation of pedotransfer functions for estimating soil water retention curve using a variety of soil data. Soil Use Manag 26(1):68–74CrossRefGoogle Scholar
  12. Deb SK, Shukla MK (2012) Variability of hydraulic conductivity due to multiple factors. Am J Environ Sci 8(5):489–502CrossRefGoogle Scholar
  13. Duan R et al (2011) Comparison of methods to estimate saturated hydraulic conductivity in Texas soils with grass. J Irrig Drain Eng 138(4):322–327CrossRefGoogle Scholar
  14. Eberhart RC, Shi Y (1998) Comparison between genetic algorithms and particle swarm optimization. In: Porto VW, Saravanan N, Waagen D, Eiben AE (eds) Evolutionary programming VII. EP 1998. Lecture notes in computer science, vol 1447. Springer, Berlin, HeidelbergGoogle Scholar
  15. Farrokhian Firouzi A et al (2015) Bacteria transport and retention in intact calcareous soil columns under saturated flow conditions. J Hydrol Hydromech 63(2):102–109CrossRefGoogle Scholar
  16. Gaing ZL (2004) A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE T Energy Conver 19(2):384–391CrossRefGoogle Scholar
  17. Ghorbani-Dashtaki S, Homaee M, Loiskandl W (2016) Towards using pedotransfer functions for estimating infiltration parameters. Hydrol Sci J 61(8):1477–1488CrossRefGoogle Scholar
  18. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, ReadingGoogle Scholar
  19. Hajihassani M, Jahed Armaghani D, Sohaei H, Tonnizam Mohamad E, Marto A (2014) Prediction of airblast-overpressure induced by blasting using a hybrid artificial neural network and particle swarm optimization. Appl Acoust 80:57–67CrossRefGoogle Scholar
  20. Hajihassani M et al (2018) Applications of particle swarm optimization in geotechnical engineering: a comprehensive review. Geotech Geol Eng 36(2):705–722CrossRefGoogle Scholar
  21. Homaee M, Firouzi AF (2008) Deriving point and parametric pedotransfer functions of some gypsiferous soils. Soil Res 46(3):219–227CrossRefGoogle Scholar
  22. Hoque MS et al (2012) An implementation of intrusion detection system using genetic algorithm. Int J Net Sec App 04:109–120Google Scholar
  23. Hosseini M, Movahedi Naeini SA, Dehghani AA, Khaledian Y (2016) Estimation of soil mechanical resistance parameter by using particle swarm optimization, genetic algorithm and multiple regression methods. Soil Tillage Res 157:32–42CrossRefGoogle Scholar
  24. Hu Z, Chan CW (2015) In-situ bioremediation for petroleum contamination: a fuzzy rule-based model predictive control system. Eng Appl Artif Intell 38:70–78CrossRefGoogle Scholar
  25. Jalali V et al (2017). Evaluating performance of macroscopic water uptake models at productive growth stages of durum wheat under saline conditions. Agric Water Manage 180:13–21CrossRefGoogle Scholar
  26. Johari A et al (2010) Modelling the mechanical behaviour of unsaturated soils using a genetic algorithm-based neural network. Comput Geotech 38(1):22–29Google Scholar
  27. Kaufmann M, Tobias S, Schulin R (2009) Quality evaluation of restored soils with a fuzzy logic expert system. Geoderma 151(3):290–302CrossRefGoogle Scholar
  28. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, Perth, pp 1942–1948.  https://doi.org/10.1109/ICNN.1995.488968
  29. Khodaverdiloo H, Homaee M, van Genuchten MT, Dashtaki SG (2011) Deriving and validating pedotransfer functions for some calcareous soils. J Hydrol 399(1):93–99CrossRefGoogle Scholar
  30. Koopialipoor M et al (2017) A neuro-genetic predictive model to approximate over break induced by drilling and blasting operation in tunnels. Bull Eng Geol Environ.  https://doi.org/10.1007/s10064-017-1116-2
  31. Leij FJ, Romano N, Palladino M, Schaap MG, Coppola A (2004) Topographical attributes to predict soil hydraulic properties along a hillslope transect. Water Resour Res 40(2).  https://doi.org/10.1029/2002WR001641
  32. Lilly A, Nemes A, Rawls WJ, Pachepsky YA (2008) Probabilistic approach to the identification of input variables to estimate hydraulic conductivity. Soil Sci Soc Am J 72(1):16–24CrossRefGoogle Scholar
  33. Lin H et al (1999) Effects of soil morphology on hydraulic properties II. Hydraulic pedotransfer functions. Soil Sci Soc Am J 63(4):955–961CrossRefGoogle Scholar
  34. McBratney AB, Odeh IOA (1997) Application of fuzzy sets in soil science: fuzzy logic, fuzzy measurements and fuzzy decisions. Geoderma 77(2–4):85–113CrossRefGoogle Scholar
  35. McBratney AB, Minasny B, Cattle SR, Vervoort RW (2002) From pedotransfer functions to soil inference systems. Geoderma 109(1):41–73CrossRefGoogle Scholar
  36. Minasny B, Mcbratney AB (2002) The neuro-m method for fitting neural network parametric Pedotransfer functions. Soil Sci Soc Am J 66(4):1407–a-1407CrossRefGoogle Scholar
  37. Minasny B, Hopmans JW, Harter T, Eching SO, Tuli A, Denton MA (2004) Neural networks prediction of soil hydraulic functions for alluvial soils using multistep outflow data. Soil Sci Soc Am J 68(2):417–429CrossRefGoogle Scholar
  38. Mohamad ET, Armaghani DJ, Momeni E, Yazdavar AH, Ebrahimi M (2016) Rock strength estimation: a PSO-based BP approach. Neural Comput Applic 1–12.  https://doi.org/10.1007/s00521-016-2728-3 CrossRefGoogle Scholar
  39. Motaghian H, Mohammadi J (2011) Spatial estimation of saturated hydraulic conductivity from terrain attributes using regression, kriging, and artificial neural networks. Pedosphere 21(2):170–177CrossRefGoogle Scholar
  40. Pachepsky YA, Rawls WJ, Lin HS (2006) Hydropedology and pedotransfer functions. Geoderma 131(3):308–316CrossRefGoogle Scholar
  41. Ping Tian D (2013) A review of convergence analysis of particle swarm optimization. Int J Grid Dist Comput 6(6):117–128CrossRefGoogle Scholar
  42. Rasheed S, Sasikumar K (2015) Modelling vertical infiltration in an unsaturated porous media using neural network architecture. Aquat Procedia 4:1008–1015CrossRefGoogle Scholar
  43. Rawls WJ, Pachepsky YA (2002) Using field topographic descriptors to estimate soil water retention. Soil Sci 167(7):423–435CrossRefGoogle Scholar
  44. Rawls WJ, Brakensiek DL, Logsdon SD (1993) Predicting saturated hydraulic conductivity utilizing fractal principles. Soil Sci Soc Am J 57(5):1193–1197CrossRefGoogle Scholar
  45. Romano N, Palladino M (2002) Prediction of soil water retention using soil physical data and terrain attributes. J Hydrol 265(1):56–75CrossRefGoogle Scholar
  46. Shahnazar A, Nikafshan Rad H, Hasanipanah M, Tahir MM, Jahed Armaghani D, Ghoroqi M (2017) A new developed approach for the prediction of ground vibration using a hybrid PSO-optimized ANFIS-based model. Environ Earth Sci 76:527–544CrossRefGoogle Scholar
  47. Sharma SK, Mohanty BP, Zhu J (2006) Including topography and vegetation attributes for developing pedotransfer functions. Soil Sci Soc Am J 70(5):1430–1440CrossRefGoogle Scholar
  48. Shirani H et al (2015) Determining the features infl uencing physical quality of calcareous soils in a semiarid region of Iran using a hybrid PSO-DT algorithm. Geoderma 259–260:1–11CrossRefGoogle Scholar
  49. Tabassum M, Mathew K (2014) A genetic algorithm analysis towards optimization solutions. Int J Digit Inform Wir Com (IJDIWC) 4(1):124–142Google Scholar
  50. Tabassum MN et al (2013) B-positive particle swarm optimization (BPS O). Int J Comput Net Tech 1(2):95–102CrossRefGoogle Scholar
  51. Taraghi B Jalali VR (2014) Fuzzy c-mean (FCM) clustering and genetic algorithm capability in predicting saturated hydraulic conductivity. Technology, communication and knowledge (ICTCK), 2014 international congress on, IEEEGoogle Scholar
  52. Vereecken H, Weynants M, Javaux M, Pachepsky Y, Schaap MG, Genuchten MT (2010) Using pedotransfer functions to estimate the van Genuchten–Mualem soil hydraulic properties: a review. Vadose Zone J 9(4):795–820CrossRefGoogle Scholar
  53. Wilson W (2000) Simulating ecological and evolutionary systems in C. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  54. Wu Q et al (2017) A RBFNN-based method for the prediction of the developed height of a water-conductive fractured zone for fully mechanized mining with sublevel caving. Arab J Geosci 10(7):172CrossRefGoogle Scholar
  55. Zanetti SS, Cecílio RA, Alves EG, Silva VH, Sousa EF (2015) Estimation of the moisture content of tropical soils using colour images and artificial neural networks. Catena 135:100–106CrossRefGoogle Scholar
  56. Zhang N et al (2017) Groundwater depth predictions by GSM, RBF, and ANFIS models: a comparative assessment. Arab J Geosci 10(8):189CrossRefGoogle Scholar
  57. Zhao C, Shao M’, Jia X, Nasir M, Zhang C (2016) Using pedotransfer functions to estimate soil hydraulic conductivity in the loess plateau of China. Catena 143:1–6CrossRefGoogle Scholar
  58. Zou G, Li Y, Wang Y, Liu DL, Liu X, Li Y, Wu J (2016) Pedo-transfer functions for estimating the hydraulic properties of paddy soils in subtropical Central China. Arch Agron Soil Sci 62(7):982–993CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  • Melika Nematolahi
    • 1
  • Vahidreza Jalali
    • 1
  • Majid Hejazi Mehrizi
    • 1
  1. 1.Department of Soil Science, Faculty of AgricultureShahid Bahonar University of KermanKermanIran

Personalised recommendations