Skip to main content
Log in

A story told by calcareous nannofossils—the timing and course of an Eocene meteorite impact in central Jordan

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

A circular structure, 5.5 km in diameter, in central eastern Jordan has been interpreted as a large meteorite impact structure. The age of the Waqf As Suwwan impact is poorly constrained. By examining calcareous nannofossils from the sediments exposed in this structure, an age model of the timing of the event has been obtained. A total of 81 smear slides from two cores (BH-1, BH-2) penetrating the sediments of the central structure were prepared in order to obtain a biostratigraphic age for the post-impact sediments. The calcareous nannofossils assign sediments below the breccias of the core BH-1 an age of late Campanian to late Maastrichtian and a mixture of late Maastrichtian to early Eocene ages in the breccia horizon, while core BH-2 is of early Maastrichtian to late Maastrichtian age. The upper part of the sediments, removed in from adjacent area, consists of breccia components. The presences of calcareous nannofossil marker assemblages suggest that these components were derived from two different sources: a Cretaceous and a Paleocene-Early Eocene one. The deposition of the breccia resulted from gravitational collapse of water-saturated sediments in two stages; the earlier of these was more intensive than the latter. The stratigraphic framework and the presence of reworked Cretaceous and Paleocene calcareous nannofossils within Paleogene nannofossil Zone NP12/NP13 suggests an early Eocene age for the impact. The upper part of the Cretaceous sediments was thermally altered by the impact causing partial or complete dissolution of the calcareous nannofossils. This caused overgrowth for the more resistant species, while others were dissolved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adelseck CGJ, Geehan GW, Roth PH (1973) Experimental evidence for the selective dissolution and overgrowth of calcareous nannofossils during diagenesis. Geol Soc Am Bull 84:2755–2762

    Article  Google Scholar 

  • Al-Hejoj IK, Salameh E, Abu Hamad A (2013) Deformed fossils and related structures in Jordan. Jordan J Earth Environ Sci 5(1):31–44

    Google Scholar 

  • AlHiyari A, Halasa W (2009) Geological map of Qasr At Tuba, 335-II, scale 1:100,000. Geology Directorate, Natural Resources Authority, Amman

  • Alqudah M, Ali Hussein M, Van den Boorn S, Giraldo VM, Kolonic S, Podlaha OG, Mutterlose J (2014) Eocene oil shales from Jordan—paleoenvironmental implications from reworked microfossils. Mar Pet Geol 52:93–106

    Article  Google Scholar 

  • Alqudah M, Ali Hussein M, Van den Boorn S, Podlaha OG, Mutterlose J (2015) Biostratigraphy and depositional setting of Maastrichtian—Eocene oil shales from Jordan. Mar Pet Geol 60:87–104

    Article  Google Scholar 

  • Bain GW (1940) Geological, chemical and physical problems in the marble industry: American Institute of Mining and Metallurgical Engineers Technical Publication, p 1261

  • Bender F (1968) Geologie von Jordanien. Beitrag zur regionalen Geologie der Erde, v. 7. Bornträger Publication Berlin

  • Bender F (1975) Geology of the Arabian peninsula-Jordan. United States geological survey professional paper 560-I, Washington

  • Buchner E, Schnieder M (2009) Multiple fluvial reworking of impact ejecta—a case study from the Ries crater, southern Germany. Meteorit Planet Sci 44(7):1051–1060

    Article  Google Scholar 

  • Bukry D (1971) Cenozoic calcareous nannofossils from Pacific Ocean: San Diego Society of Natural History Transaction 16:303–237

  • Burnett J (1998) Upper cretaceous. In: Bown P (ed) Calcareous nannofossils biostratigraphy. Chapman and Hall, London, pp 132–199

    Chapter  Google Scholar 

  • Edwards LE, Self-Trail JM (2002) Shocking news—impact effects on marine microfossils, Chesapeake Bay Impact Structure, Virginia. Abstract, abstract volume, American Geophysical Union, Spring Meeting 2002, abstract T21A-04

  • Ferreira J, Cachao M, Gonzalez R (2008) Reworked calcareous nannofossils as ocean dynamic tracers: the Guadiana shelf case study (SW Iberia). Estuar Coast Shelf Sci 79:59–70

    Article  Google Scholar 

  • Heimbach W (1969) Vulkanogene Erscheinung in der Kalktafel Zentraljordaniens. Beihefte zum Geologischen Jahrbuch 81:149–160

    Google Scholar 

  • Heinrichs T, Salameh E, Khoury H (2014) The Waqf as Suwwan crater, Eastern Desert of Jordan—aspects of the deep structure of an oblique impact from reflection seismic and gravity data. Int J Earth Sci (Geol Rundsch) 103:233–252

    Article  Google Scholar 

  • Kenkmann T, Reimold WU, Kirfan M, Salameh E, Konsul K, Khoury H (2010) The complex impact crater Jebel Waqf as Suwwan in Jordan: effects of target heterogeneity and impact obliquity on central uplift formation. Geol Soc Am Spec Pap 465:471–487

    Google Scholar 

  • Khoury H, Salameh E, Khirfan M (2012) Chert from Jebel Waqf as Suwwan meteoritic impact structure. Neues Jb Geol Paläontol Abh 265(3):281–293

    Article  Google Scholar 

  • Khoury H, Salameh E, Reimold U (2013) Mineralogy and geochemistry of post-impact sedimentary infill of the moat and carbonates of the crater floor, Waqf as Suwwan impact structure. Large Meteorite Impacts and Planetary Evolution V, Sadbury, Canada. Abstract no. 3030. http://www.hou.usra.edu/meetings/sudbury2013/

  • Martini E (1970) Standard Paleogene calcareous nannoplankton zonation. Nature 226:560–561

    Article  Google Scholar 

  • Melosh HJ (1989) Impact cratering. Oxford, New York

  • Nunes AA, Abbott DH, Glatz CA (2002) Microfossil melting by the Ewing impact. Abstract, abstract volume, Denver annual meeting, session no. 239, paper no. 239-1

  • Perch-Nielsen K (1985) Cenozoic calcareous nannofossils. In: Bolli HM, Saunders JB, Perch-Nielsen K (eds) Plankton stratigraphy. Cambridge University Press, Cambridge, pp 427–554

    Google Scholar 

  • Pirkenseer C, Spezzaferri S, Berger J-P (2011) Reworked microfossils as a paleogeographic tool. Geology 39(9):843–846

    Article  Google Scholar 

  • Roth PH (1973) Calcareous nannofossils-leg 17, Deep Sea drilling project. In: Winterer EL, Ewing JI (eds) Initial reports of the deep sea drilling project, vol 17, pp. 695–795

  • Roth PH (1984) Preservation of calcareous nannofossils and fine-grained carbonate particles in mid-cretaceous sediments from the southern Angola Basin, site 530. In: Hay WW, Sibuet J-C (eds) Initial reports of the deep sea drilling project, vol 75, pp. 651–655

    Google Scholar 

  • Salameh E, Khoury H, Schneider W (2006) Jebel Waqf as Suwwan, Jordan: a possible impact crater—a first approach. Z Dtsch Ges Geowiss 157(3):1–8

    Google Scholar 

  • Salameh E, Khoury H, Reimold WU, Schneider W (2008) The first large meteorite impact structure discovered in the Middle East: Waqf As Suwwan, Jordan. Meteorit Planet Sci 43(10):1681–1690

    Article  Google Scholar 

  • Salameh E, Khoury H, Reimold WU (2014) Drilling the Waqf As Suwaan impact structure. Int J Earth Sci 103(1):233–252

    Article  Google Scholar 

  • Schmieder M, Reimold WU, Kirfan M, Salameh E, Khoury H (2011a) Shock-metamorphic microstructures in chert from Jebel Waqf As Suwwan impact structure, Jordan. Meteorit Planet Sci 46:574–586

    Article  Google Scholar 

  • Schmieder M, Buchner E, Reimold WU (2011b) Impact-related deformationfeatures in cherts from terrestrial impact structures. Abstract, abstract volume, 42nd lunar and planetary Science Conference. Texas, USA, no. 2274

  • Self-Trail JM (2003) Shock-wave-induced fracturing of calcareous nannofossils from the Chesapeake Bay impact crater. Geology 31(8):697–700

    Article  Google Scholar 

  • Self-Trail JM, Edwards LE, Litwin RJ (2009) Paleontological interpretations of crater processes and infilling of synimpact sediments from Chesapeake Bay impact structure. In: Gohn GS, Koeberl C, Miler KG, Reimold WU (eds) The ICDP-USGS deep drilling project in the Chesapeake Bay impact structure: results from Eyreville core holes. Geological Society of America, special paper 458, pp. 633–654

  • Uutela A (2001) Proterozoic and early Palaeozoic microfossils in the Karikkoselkä impact crater, central Finland. Bull Geol Soc Finl 73(1–2):75–85

    Article  Google Scholar 

Download references

Acknowledgments

This study is in cooperation between the American University of Beirut, the Ruhr University Bochum, and the University of Jordan. The University of Jordan hosts the cores. All the analyses were performed in the Ruhr University Bochum and in the Central Research Science Laboratory at the American University of Beirut. The authors would like to thank Dr. Rolf Neuser from the SEM lab of the Department of Geology, Mineralogy and Geophysics (Bochum) for his support. We would like to thank Dr. Jean Self-Trail and Dr. David Watkins for their useful suggestions. We also would like to thank Ms. Ibtisam Baik for her helpful comments. The second author thanks Alexander von Humboldt Foundation (AvH) for their support during his research visit in Museum für Naturkunde.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Alqudah.

Additional information

Highlights

• Clasts and matrix of the sedimentary breccias were tested.

• The clasts of the breccia were derived from a Paleocene-early Eocene source.

• Material was deposited by gravitational collapses of water-saturated sediments.

• The overgrowth formed on the most resistant taxa during the event.

Appendix

Appendix

Taxonomic list of species have used in this study listed below:

Ahmuellerella Reinhardt

A. octoradiata (Górka) Reinhardt

A. regularis (Górka) Reinhardt and Górka

Arkhangelskiella Vekshina

A. cymbiformis Vekshina

A. maastrichtiana Varol’s

Biscutum Black in Black and Barnes

B. constans (Górka) Black in Black and Barnes

B. ellipticum (Górka) Grün in Grün and Allemann

B. melaniae (Górka) Burnett

Broinsonia Bukry

B. parca (Stradner) Bukry ssp. constricta Hattner et al.

Coccolithus Schwarz

C. pelagicus (Wallich) Schiller

C. formosus (Kamptner) Wise

Cribrosphaerella Deflandre in Piveteau

C. ehrenbergii (Arkhangelsky) Deflandre in Piveteau

Chiasmozygus Gartner

C. bifarius Bukry

Cylindralithus Bramlette and Martini

C. sculptus Bukry

Discoaster Tan

D. barbadiensis Tan

D. binodosus Martini

D. deflandrei Bramlette and Riedel

D. lodoensis Bramlette and Riedel

D. mahmoudii Perch-Nielsen

D. minimus Sullivan

D. multiradiatus Bramlette and Riedel

D. septemradiatus (Klumpp) Martini

Eiffellithus Reinhardt

E. eximius (Stover) Perch-Nielsen

E. gorkae Reinhardt

E. parallelus Perch-Nielsen

Ericsonia Black

E. robusta (Bramlette and Sullivan) Edwards and Perch-Nielsen

Gartnerago Bukry

G. segmentatum (Stover) Thierstein

Girgisia (Bramlette and Sullivan) Voral

G. gammation (Bramlette and Sullivan) Voral

Lithraphidites Deflandre

L. carniolensis Deflandre

L. quadratus Bramlette and Martini

Loxolithus Noël

Loxolithus armilla (Black in Black & Barnes) Noël

Microrhabdulus Deflandre

M. decoratus Deflandre

Micula Vekshina

M. decussata Vekshina

M. murus (Martini) Bukry

M. staurophora (Gardet) Stradner

Micrantholithus Deflandre in Deflandre and Fert

M. speetonensis (Bukry) Perch-Nielsen

Prediscosphaera Vekshina

P. cretacea (Arkhangelsky) Gartner

P. grandis Perch-Nielsen

P. spinosa (Bramlette and Martini) Gartner

Placozygus Hoffman

P. fibuliformis (Reinhardt) Hoffman

Perissocyclus Black

P. fenestratus (Stover) Blak

Petrarhabdus Wind and Wise in Wise

P.copulates (Deflandre) Wind and Wise in Wise

Prinsius Hay and Mohler

P. dimorphosus (Perch-Nielsen) Perch-Nielsen

Reinhardtites Perch-Nielsen

Reinhardtites levis Prins & Sissingh in Sissingh

Retecapsa Black

R. angustiforata Black

R. crenulata (Bramlette and Martini) Grün in Grün and Allemann

Reticulofenestra Hay, Mohler and Wade

R. dictyoda (Deflandre in Deflandre & Fert) Stradner in Stradner & Edward

Rhagodiscus Reinhardt

R. angustus (Stradner) Reinhardt

R. reniformis Perch-Nielsen

Sphenolithus Deflandre in Grassè

S. radians Deflandre in Grassè

S. spiniger Bukry

Tranolithus Stover

T. orionatus (Reinhardt) Reinhardt

T. minimus Bukry

Tortolithus Crux in Crux et al.

T. caistorensis Crux in Crux et al.

Triquetrorhabdulus Martini

T. shetlandensis (Perch-Nielsen) Bown

Thoracosphaera Kamptner

Watznaueria Reinhardt

W. barnesiae (Black) Perch-Nielsen

W. biporta Bukry

W. ovata Bukry

Zeugrhabdotus Reinhardt

Z. noeliae Rood et al.

Z. sigmoides (Bramlette and Sullivan) Bown and Young

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alqudah, M., Khoury, H., Salameh, E. et al. A story told by calcareous nannofossils—the timing and course of an Eocene meteorite impact in central Jordan. Arab J Geosci 11, 451 (2018). https://doi.org/10.1007/s12517-018-3776-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-018-3776-z

Keywords

Navigation