Advertisement

Topaz solid solution in the F-rich granitic rocks from Blond (NW Massif Central, France)

  • Mohamed Soufi
  • Toufik Remmal
  • Iz Eddine EL Amrani El Hassani
  • Samira Makhoukhi
Original Paper

Abstract

The Blond peraluminous leucogranitic stock, which is a part of the Limousin in Massif Central of France, ranges in composition from two micas leucogranite to topaz–albite leucogranite which are associated to topaz microgranitic dyke (ongonite). The topaz-bearing granitic rocks recognized in this area appear as minor and late components of the massif. Analysis of topaz features within this facies allows the setting of a typological classification based upon the relationships between habits, chemical composition, and the genesis conditions of this mineral. The primary, magmatic nature of topaz has been inferred by microtextural investigations, whereas electron microprobe analyses indicate that topaz lies entirely within the space defined by natural F-OH topaz solid solution series at moderate pressures. The F-content ranges from 14.39 to 20.14 wt.% and OH/OH + F ratio ranges from 0.04 to 0.31. Two separate generations of magmatic topaz, including an early-stage medium-F topaz and a late-stage high-F topaz, are shown. These characteristics could be related to high HF concentration in the melt, while the effect of temperature on the F-content of topaz as it was demonstrated experimentally can be reviewed.

Keywords

Blond granitic stock Massif Central of France Hercynian belt Topaz-bearing granitic rocks Topaz 

Notes

Acknowledgements

We would like to thank Eric H Christiansen, Louis Raimbault and an anonymous reviewer for their constructive comments and suggestions which substantially helped improving the quality of this paper. The authors are grateful to everyone who has provided valuable assistance on the electronic microprobe at the French Geological Survey (BRGM), Orleans, and the Henri Poincaré University, Nancy, France.

References

  1. Abu El-Rus MA, Mohamed MA, Lindh A (2017) Mueilha rare metals granite, Eastern Desert of Egypt : an example of a magmatic–hydrothermal system in the Arabian–Nubian shield. Lithos 294-295:362–382Google Scholar
  2. Agangi A, Kamenetsky VS, McPhie J (2010) The role of fluorine in the concentration and transport of lithophile trace elements in felsic magmas: insights from the Gawler Range Volcanics, South Australia. Chem Geol 273:314–325Google Scholar
  3. Agangi A, Kamenetsky VS, Hofmann A, Przybyłowicz W, Vladykin NV (2014) Crystallisation of magmatic topaz and implications for Nb–Ta–W mineralisation in F-rich silicic melts—the Ary–Bulak ongonite massif. Lithos 202-203:317–330Google Scholar
  4. Aiuppa A, Baker DR, Webster JD (2009) Halogens in volcanic systems. Chem Geol 263:1–18Google Scholar
  5. Alexandrov P, Ruffet G, Cheilletz A (2002) Muscovite recrystallization and saddle-shaped 40Ar/39Ar age spectra: example from the Blond granite (Massif Central, France). Geochim Cosmochim Acta 66:1793–1807Google Scholar
  6. Anderson JL, Rowley MC (1981) Synkinematic intrusion of peraluminous and associated metaluminous granitic magmas, Whipple Mountains, California. Can Mineral 19:83–101Google Scholar
  7. Antipin V, Prokofyev V, Savina H, Mitichkin M (2000) Melt inclusions in quartz from topaz- and fluorite-bearing rare-metal granites and ongonites of the Baikal region. Eighth International Symposium on Experimental Mineralogy, Petrology and Geochemistry, April, Bergamo, Italy, 5, p 6Google Scholar
  8. Antipin V, Andreeva IA, Kovalenko VI, Kuznetsov VA (2009) Geochemical specifics of ongonites in the Ary–Bulak Massif, eastern Transbaikalia. Petrology 17:558–569Google Scholar
  9. Antipin V, Gerel O, Perepelov A, Odgerel D, Zolboo T (2016) Late Paleozoic and early Mesozoic rare-metal granites in Central Mongolia and Baikal region: review of geochemistry, possible magma sources and related mineralization. J Geosci 61:105–125Google Scholar
  10. Antunes IMHR, Neiva AMR, Ramos JMF, Silva PB, Silva MMVG, Corfu F (2013) Petrogenetic links between lepidolite-subtype aplite–pegmatite, aplite veins and associated granites at Segura (Central Portugal). Chem Erde-Geochem 73:323–341Google Scholar
  11. Aubert G (1969) Les coupoles granitiques de Montebras et d’Echassières (Massif Central Français) et la genèse de leur minéralisation en étain, lithium, tungstène et béryllium. Mém BRGM 46, 349pGoogle Scholar
  12. Badanina EV, Veksler IV, Thomas R, Syritso LF, Trumbull RB (2004) Magmatic evolution of Li-F, rare-metal granites: a case study of melt inclusions in the Khangilay complex, eastern Transbaikalia (Russia). Chem Geol 210:113–133Google Scholar
  13. Bailey JC (1977) Fluorine in granitic rocks and melts: a review. Chem Geol 19:1–42Google Scholar
  14. Baker DR, Alletti M (2012) Fluid saturation and volatile partitioning between melts and hydrous fluids in crustal magmatic systems: the contribution of experimental measurements and solubility models. Earth Sci Rev 114:298–324Google Scholar
  15. Barbier J (1967) Etude pétrologique et géochimique du granite à deux micas de Blond (Limousin, France). Sci Terre (Nancy) XII:183–206Google Scholar
  16. Barbier J (1968) Altération chimique et remaniements de l'uranium dans le granite à deux micas de Monts de Blond (Limousin, France). Sci Terre (Nancy) XIII:361–378Google Scholar
  17. Barkley M (2007) The effects of F-OH- substitution on the crystal structure of pegmatitic topaz. Thesis, Mount Holyoke College, South Hadley, University of Massachusetts, USA, 50pGoogle Scholar
  18. Barton MD (1982) The thermodynamic properties of topaz solid solutions, and some petrologic applications. Am Mineral 67:956–974Google Scholar
  19. Barton MD, Haselton HT, Hemingway BS, Kleppa OJ, Robie RA (1982) The thermodynamic properties of fluor-topaz. Am Mineral 67:350–355Google Scholar
  20. Belkasmi M, Cuney M, Raimbault L, Pollard PJ (1991) Chemistry of the micas from the Yashan rare metal granite (SE China). A comparison with Variscan examples. In: Pagel M, Leroy JL (eds) Source transport and deposition of ore metals. Balkema, Rotterdam, Netherlands, pp 729–732Google Scholar
  21. Beus AA (1982) Metallogeny of Precambrian rare metal granitoid. Rev Bras Geocienc 12:410–413Google Scholar
  22. Bottrell SH, Yardley BWD (1988) The composition of a primary granite-derived ore fluid from S.W. England, determined by fluid inclusion analysis. Geochim Cosmochim Acta 52:585–588Google Scholar
  23. Bouabsa L, Marignac C, Chabbi R, Cuney M (2010) The Filfila (NE Algeria) topaz-bearing granites and their rare metal minerals: petrologic and metallogenic implications. J Afr Earth Sci 56:107–113Google Scholar
  24. Boudreaux AP (2014) Mineralogy and geochemistry of the Erongo Granite and interior quartz–tourmaline orbicules and NYF-type miarolitic pegmatites, Namibia. Theses and dissertations, University of New Orleans, Louisiana, USA, 1854, 246pGoogle Scholar
  25. Breiter K (2002) From explosive breccia to unidirectional solidification textures: magmatic evolution of a phosphorus- and fluorine-rich granite system (Podlesi, Krusne hory Mts., Czech Republic). Bull Czech Geol Surv 77:67–92Google Scholar
  26. Breiter K (2012) Nearly contemporaneous evolution of the A- and S-type fractionated granites in the Krušné hory/Erzgebirge Mts., Central Europe. Lithos 151:105–121Google Scholar
  27. Breiter K, Fryda J, Seltmann R, Thomas R (1997) Mineralogical evidence for two magmatic stages in the evolution of an extremely fractionated P-rich rare-metal granite: the Podlesi stock (Krusne hory, Czech Republic). J Petrol 38:1723–1739Google Scholar
  28. Breiter K, Müller A, Leichmann J, Gabašová A (2005) Textural and chemical evolution of a fractionated granitic system: the Podlesí stock, Czech Republic. Lithos 80:323–345Google Scholar
  29. Breiter K, Broska I, Uher P (2015) Intensive low-temperature tectono-hydrothermal overprint of peraluminous rare-metal granite: a case study from the Dlhá dolina valley (Gemericum, Slovakia). Geol Carpath 66:19–36Google Scholar
  30. Breiter K, Durisova J, Hrstka T, Korbelova Z, Vankova MH, Galiova MV, Kanicky V, Rambousek P, Knesl I, Dobes P, Dosbaba M (2017) Assessment of magmatic vs. metasomatic processes in rare-metal granites: a case study of the Cinovec/Zinnwald Sn–W–Li deposit, Central Europe. Lithos 292-293:198–217Google Scholar
  31. Burnol L (1974a) Géochimie du beryllium et types de concentrations dans les leucogranites du Massif Central Français. Mém BRGM 85, 168pGoogle Scholar
  32. Burnol L (1974b) Acid granites and associated metallization in the North-Western part of the French Central Masse. International Geological Correlation Programme, Metallization Associated with Acid Magmatism, Symposium Karlovy-Vary, Excursion C guidebook, BRGM Editions, Paris, 205pGoogle Scholar
  33. Burt DM, Bikun JV, Christiansen EH (1980) Distribution and petrogensis of topaz rhyolites. Western USA. Geol Soc Am Abst with Programs 12, 396pGoogle Scholar
  34. Charoy B, Noronha F (1999) Rare-element (Li-rich) granitic and pegmatitic plutons: a primary or superimposed signature. Rev Bras Geocienc 29:3–8Google Scholar
  35. Chaudry MN, Howie RA (1970) Topaz from Meldon aplite, Devonshire. Mineral Mag 37:717–720Google Scholar
  36. Chaudry MN, Howie RA (1973) Lithium–aluminium micas from the Meldon aplite, Devonshire, England. Mineral Mag 39:289–296Google Scholar
  37. Chevremont P, Constans P, Ledru P, Ménillet F (1992) Notice explicative de la feuille d’Oradour-sur-Glane à 1/50000 (663). Ed BRGM, 100pGoogle Scholar
  38. Christiansen EH, Lee DE (1986) Fluorine and chlorine in granitoids from the Basin and Range Province, western United States. Econ Geol 81:1484–1494Google Scholar
  39. Christiansen EH, Venchiarutti DA (1990) Magmatic inclusions in rhyolites of the Spor Mountain formation, western Utah: limitations on compositional inferences from inclusions in granitic rocks. J Geophys Res 95:17,717–17,728Google Scholar
  40. Christiansen EH, Bikun JV, Sheridan MF, Burt DM (1984) Geochemical evolution of topaz rhyolites from the Tomas Range and Spor Mountain, Utah. Am Mineral 69:223–236Google Scholar
  41. Christiansen EH, Sheridan MF, Burt DM (1986) The geology and geochemistry of Cenozoic topaz rhyolites from the western United States. Geol Soc Am Spec Pap 205, 82pGoogle Scholar
  42. Christiansen EH, Stuckless JS, Funkhouser MJ, Howell KH (1988) Petrogenesis of rare-metal granites from depleted crustal sources: an example from the Cenozoic of Western Utah, U.S.A. In: Taylor RP and Strong DF (eds) Recent advances in the geology of granite-related mineral deposits. Can Inst Min Metall, Spec Vol 39:307–321Google Scholar
  43. Christiansen EH, Haapala I, Hart GL (2007) Are Cenozoic topaz rhyolites the erupted equivalents of Proterozoic rapakivi granites? Examples from the western United States and Finland. Lithos 97:219–246Google Scholar
  44. Clarke DB, Dorais M, Barbarin B, Barker D, Cesare B et al (2005) Occurrence and origin of andalusite in peraluminous felsic igneous rocks. J Petrol 46:441–472Google Scholar
  45. Clarke DB, Wunder B, Förster HJ, Rhede D, Hahn A (2009) Experimental investigation of near-liquidus andalusite-topaz relations in synthetic peraluminous haplogranites at 200 MPa. Mineral Mag 73:997–1007Google Scholar
  46. Colombo F, Lira R, Pannunzio Miner EV (2009) Mineralogical characterization of topaz from miarolitic pegmatites and W-bearing greisen in the A-type El Portezuelo granite, Papachacra (Catamarca Province). Rev Asoc Geol Arg 64:194–200Google Scholar
  47. Colombo F, Lira R, Dorais MJ (2010) Mineralogy and crystal chemistry of micas from the A-type El Portezuelo granite and related pegmatites, Catamarca (NW Argentina). J Geosci 55:43–56Google Scholar
  48. Congdon RD, Nash WP (1991) Eruptive pegmatite magma: rhyolite of the Honeycomb Hills, Utah. Am Mineral 76:1261–1278Google Scholar
  49. Costi HT, Dall’Agnol R, Pichavant M, Ramo OT (2009) The peralkaline tin-mineralized Madera cryolite albite-rich granite of Pitinga, Amazonian craton, Brazil: petrography, mineralogy and crystallization processes. Can Mineral 47:1301–1327Google Scholar
  50. Cuney M, Marignac C, Weisbrod A (1992) The Beauvoir topaz-lepidolite-albite granite (Massif Central, France): the disseminated magmatic Sn–Li–Ta–Nb–Be mineralization. Econ Geol 87:1766–1794Google Scholar
  51. Deer WA, Howie RA, Zussman J (1965) Rock forming minerals, 1. Longmans, London, pp 145–150Google Scholar
  52. Deer WA, Howie RA, Zussman J (1997) Rock forming minerals, 1A orthosilicates. The Geological Society, London, pp 801–815Google Scholar
  53. Dianiska I, Breiter K, Broska I, Kubis M, Malachovsky P (2002) First phosphorous-rich Nb–Ta–Sn-specialised granite from the Carpathians–Dlha dolina Valley granite pluton, Gemeric Superunit. Geol Carpath 53: Spec Issue (CD-ROM)Google Scholar
  54. Ditterova H (2014) Textural analysis of granites from the Western Krusne hory/Erzgebirge pluton: implications for crystallization kinetics and crystal–melt interactions. Master thesis, Charles University, Praha, Czech Republic, 130pGoogle Scholar
  55. Dolejs D, Baker DR (2004) Thermodynamic analysis of the system Na2O-K2O-CaO-Al2O3-SiO2-H2O-F2O−1: stability of fluorine-bearing minerals in felsic igneous suites. Contrib Mineral Petrol 146:762–778Google Scholar
  56. Dostal J, Kontak DJ, Gerel O, Shellnutt JG, Fayek M (2015) Cretaceous ongonites (topaz-bearing albite-rich microleucogranites) from Ongon Khairkhan, Central Mongolia: products of extreme magmatic fractionation and pervasive metasomatic fluid: rock interaction. Lithos 236-237:173–189Google Scholar
  57. Dumanska-Slowik M, Tobola T, Natkaniec-Nowak L, Pedrosa-Soares AC (2016) Characteristics of inclusions in topaz from Serrinha pegmatite (Medina granite, Minas Gerais state, SE Brazil) studied by Raman spectroscopy. Vib Spectrosc 85:196–201Google Scholar
  58. Durisova J (1984) Origin of greisen assemblages in the western Krusne hory Mts. Vest Ustr Ust Geol 59:141–152 (in Czech)Google Scholar
  59. Duthou JL (1977) Chronologie Rb–Sr et géochimie des granitoïdes d’un segment de la chaîne varisque. Relation avec le métamorphisme. Le nord Limousin (Massif Central Français). Ann. Fac. Sci. Univ. Clermont-Ferrand 63, 294pGoogle Scholar
  60. Eadington PJ (1983) A fluid inclusion investigation of ore formation in a tin-mineralized granites, New England, new South Wales. Econ Geol 78:1204–1221Google Scholar
  61. Eadington PJ, Nashar B (1978) Evidence for the magmatic origin of quartz-topaz rocks from the New England batholith. Australia. Contrib Mineral Petrol 67:433–438Google Scholar
  62. Elmi Assadzadeh G, Samson IM, Gagnon JE (2017) Evidence for aqueous liquid-liquid immiscibility in highly evolved tin-bearing granites, Mount Pleasant, New Brunswick, Canada. Chem Geol 448:123–136Google Scholar
  63. Forster HJ, Tischendorf G, Trumbull RB, Gottesmann B (1999) Late-collisional granites in the Variscan Erzgebirge, Germany. J Petrol 40:1613–1645Google Scholar
  64. Frindt S, Poutiainen M (2002) P-T path fluid evolution in the Gross Spitzkoppe granite stock, Namibia. Bull Geol Soc Finland 74:103–114Google Scholar
  65. Frindt S, Haapala I, Pakkanen L (2004) Anorogenic Gross Spitzkoppe granite stock in central western Namibia: part I. Petrology and geochemistry. Am Mineral 89:841–856Google Scholar
  66. Gao P, Zhao ZF, Zheng YF (2014) Petrogenesis of Triassic granites from the Nanling Range in South China: implications for geochemical diversity in granites. Lithos 210-211:40–56Google Scholar
  67. Gioncada A, Orlandi P, Vezzoli L, Omarini R, Mazzuoli R, Lopez-Azarevich V, Sureda R, Azarevich M, Acocella V, Ruch J (2014) Topaz magmatic crystallization in rhyolites of the Central Andes (Chivinar volcanic complex, NW Argentina): constraints from texture, mineralogy and rock chemistry. Lithos 184-187:62–73Google Scholar
  68. Glyuk DS, Anfiligov VN (1973) Phase equilibria in the system granite-H2O-HF at a pressure of 1000 kg/cm2. Geochem Int 10:321–325Google Scholar
  69. Glyuk DS, Trufanova LG, Bazarova SB (1980) Phase relations in the granite-H2O-LiF system at 1000 kg/cm2. Geochem Int 17:35–48Google Scholar
  70. Gomes MEP, Neiva AMR (2002) Petrogenesis of tin-bearing granites from Ervedosa, northern Portugal: the importance of magmatic processes. Chem Erde-Geochem 62:47–72Google Scholar
  71. Gu LX, Gou XQ, Zhang ZZ, Wu CZ, Liao JJ, Yang H (2003) Geochemistry and petrogenesis of a multi-zoned high Rb and F granite in eastern Tianshan. Acta Petrol Sinica 19:585–600Google Scholar
  72. Gu LX, Zhang ZZ, Wu CZ, Gou XQ, Liao JJ, Yang H (2011) A topaz- and amazonite-bearing leucogranite pluton in eastern Xinjiang, NW China and its zoning. J Asian Earth Sci 42:885–902Google Scholar
  73. Haapala I (1997) Magmatic and postmagmatic processes in tin-mineralized granites: topaz-bearing leucogranite in the Eurajoki Rapakivi granite stock, Finland. J Petrol 38:1645–1659Google Scholar
  74. Haapala I, Thomas R (2000) Melt inclusions in quartz and topaz of the topaz granite from Eurajoki, Finland. J Czech Geol Soc 45:149–154Google Scholar
  75. Harlaux M, Romer RL, Mercadier J, Morlot C, Marignac C, Cuney M (2017) 40 ma of hydrothermal W mineralization during the Variscan orogenic evolution of the French Massif Central revealed by U–Pb dating of wolframite. Miner Depos 53:21–51.  https://doi.org/10.1007/s00126-017-0721-0 Google Scholar
  76. Hien-Dinh TT (2015) Processing of Vietnamese lithium ores to produce LiCl. Thesis, Faculty of Environment and Natural Resources. University of Freiburg, Germany 168pGoogle Scholar
  77. Horbe MA, Horbe AMC, Costi HT, Teixeira JT (1991) Geochemical characteristics of cryolite-tin-bearing granites from the Pitinga mine, northwestern Brazil: a review. J Geochem Explor 40:227–249Google Scholar
  78. Huang XL, Wang RC, Chen XM, Hu H, Lui CS (2002) Vertical variations in the mineralogy of the Yichun topaz–lepidolite granite, Jiangxi Province, southern China. Can Mineral 40:1047–1068Google Scholar
  79. Huang H, Zhang ZC, Santosh M, Zhang DY (2014) Geochronology, geochemistry and metallogenic implications of the Boziguo'er rare metal-bearing peralkaline granitic intrusion in south Tianshan, NW China. Ore Geol Rev 61:157–174Google Scholar
  80. Huang FF, Wang RC, Xie L, Zhu JC, Erdmann S, Che XD, Zhang RQ (2015) Differentiated rare-element mineralization in an ongonite–topazite composite dike at the Xianghualing tin district, southern China: an electron-microprobe study on the evolution from niobium-tantalum-oxides to cassiterite. Ore Geol Rev 65:761–778Google Scholar
  81. Icenhower JP, London D (1995) An experimental study of element partitioning among biotite, muscovite, and coexisting peraluminous silicic melt at 200 MPa (H2O). Am Mineral 80:1229–1251Google Scholar
  82. Icenhower JP, London D (1997) Partitioning of fluorine and chlorine between biotite and granitic melt: experimental calibration at 200 MPa H2O. Contrib Mineral Petrol 127:17–29Google Scholar
  83. Inverno CMC, Hutchinson RW (2004) The endogranitic tin zone, Mount Pleasant, New Brunswick, Canada, and its metallogenesis. Trans Inst Min Metall Sect B Appl Earth Sci 113:B261–B288Google Scholar
  84. Jacob C (1961) Etude géologique et métallogénique de la région des Monts de Blond (Haute-Vienne). Unpublished thesis, University of Paris, FranceGoogle Scholar
  85. Johnston C, Chappell BW (1992) Topaz-bearing rocks from Mount Gibson, North Queensland, Australia. Am Mineral 77:303–311Google Scholar
  86. Kamenetsky VS, Kamenetsky MB (2010) Magmatic fluids immiscible with silicate melts: examples from inclusions in phenocrysts and glasses, and implications for magma evolution and metal transport. Geofluids 10:293–311Google Scholar
  87. Kebede T, Koeberl C, Koller F (2001) Magmatic evolution of the Suqii–Wagga garnet-bearing two-mica granite, Wallagga area, western Ethiopia. J Afr Earth Sci 32:193–221Google Scholar
  88. Kesraoui M, Nedjari S (2002) Contrasting evolution of low-P rare metal granites from two different terranes in the Hoggar area, Algeria. J Afr Earth Sci 34:247–257Google Scholar
  89. Kesraoui M, Verkaeren J (1998) Minéralisation à W–Sn du Hoggar central. Exemple du gisement de Tin-Amzi. Mém Serv Géol Alg 9:187–198Google Scholar
  90. Kleeman JD (1985) Origin of disseminated wolframite bearing quartz-topaz at Torrington, New South Wales, Australia. In: High heat production (HHP) granites, hydrothermal circulation and ore genesis. Inst Min Metall 197–201Google Scholar
  91. Komatsu K, Kuribayashi T, Kudoh Y (2003) Effect of temperature and pressure on the crystal structure of topaz, Al2Si O4(OH,F)2. J Mineral Petrol Sci 98:167–180Google Scholar
  92. Kontak DJ (1990) The East Kemptville topaz–muscovite leucogranite, Nova Scotia. I. Geological setting and whole rock geochemistry. Can Mineral 28:787–825Google Scholar
  93. Kontak DJ (1991) The East Kemptville topaz–muscovite leucogranite, Nova Scotia. II. Mineral chemistry. Can Mineral 29:37–60Google Scholar
  94. Kovalenko VI (1973) Distribution of fluorine in a topaz-bearing quartz–keratophyre dike (ongonite) and solubility of fluorine in granitic melts. Geochem Int 10:41–49Google Scholar
  95. Kovalenko NI (1977) The reactions between granite and aqueus hydro-fluorine acid in relation to the origin of fluorine bearing granites. Geochem Int 10:108–118Google Scholar
  96. Kovalenko NI (1979) Experimental investigations of the formation of rare-metal lithium–fluorine granites. Nauka Press, Moscow, Russia 152p (in Russian)Google Scholar
  97. Kovalenko VI, Kuz'min MI, Letnikov FA (1970) Magmatic origin of lithium and fluorine bearing rare metal granite. Dokl Acad Nauk SSSR 190:189–192Google Scholar
  98. Kovalenko VI, Kuz'min MI, Antipin VS, Petrov LL (1971) Topaz bearing quartz keratophyre (ongonite), a new variety of subvolcanic igneous vein rock. Dokl Acad Sci USSR Earth Sci Sect 199:132–135Google Scholar
  99. Kovalenko VI, Grebennikov AM, Antipin VS (1975) Ongonite of the Arybulak stock, Transbaikal: the first find of a subvolcanic analog of rare metal-bearing lithium–fluorine granite (apogranite) in the USSR. Dokl Acad Nauk SSSR 220:158–160Google Scholar
  100. Kovalenko VI, Antipin VS, Kovalenko NI, Ryabchkov IP, Petrov LL (1984) Fluorine distribution coefficients in magmatic rocks. Geochem Int 21:66–84Google Scholar
  101. Kovalenko VI, Tsaryeva GM, Naumov VB, Hervig RL, Newman S (1996) Magma of pegmatites from Volhynia: composition and crystallization parameters determined by magmatic inclusion studies. Petrol 4:277–290Google Scholar
  102. Kuznetsov VA, Andreeva IA, Kovalenko VI, Antipin VS, Kononkova NN (2004) Abundance of water and trace elements in the ongonite melt of the Ary–Bulak massif, eastern Transbaikal region: evidence from study of melt inclusions. Dokl Earth Sci 396:571–576Google Scholar
  103. Legros H, Marignac C, Mercadier J, Cuney M, Richard A, Wang RC, Charles N, Lespinasse MY (2016) Detailed paragenesis and Li-mica compositions as recorders of the magmatic–hydrothermal evolution of the Maoping W–Sn deposit (Jiangxi, China). Lithos 264:108–124Google Scholar
  104. Lenharo SLR, Polland PJ, Born H (2000) Matrix rock texture in the Pitinga topaz granite, Amazonas, Brazil. Rev Bras Geocienc 30:238–241Google Scholar
  105. Leroy JL, Rodriguez-Rios R, Dewonck S (2002) The topaz-bearing rhyolites from the San Luis Potosi area (Mexico): characteristics of the lava and growth conditions of topaz. Bull Soc Géol Fr 173:579–588Google Scholar
  106. Li F, Zhu J, Rao B, Jin Z, Zhang L (2004) Origin of Li–F-rich granite: evidence from high P–T experiments. Sci China Ser D-Earth Sci 47:639–650Google Scholar
  107. Li S, Li J, Chou IM, Jiang L, Ding X (2016) The formation of the Yichun Ta–Nb deposit, South China, through fractional crystallization of magma indicated by fluid and silicate melt inclusions. J Asian Earth Sci 137:180–193Google Scholar
  108. Liu CS, Ling HF, Hong XL (1999) An F-rich, Sn-bearing volcanic-intrusive complex in Yanbei, South China. Econ Geol 94:325–342Google Scholar
  109. London D (1997) Estimating abundances of volatile and other mobile components in evolved silicic melts through mineral–melt equilibria. J Petrol 38:1691–1706Google Scholar
  110. London D, Morgan GBVI (2012) The pegmatite puzzle. Elements 8:263–268Google Scholar
  111. London D, Hervig RL, Morgan GBVI (1988) Melt-vapor solubilities and elemental partitioning in peraluminous granite–pegmatite systems: experimental results with Macusani glass at 200 MPa. Contri Mineral Petrol 99:360–373Google Scholar
  112. London D, Morgan GBVI, Wolf MB (2001) Amblygonite–montebrasite solid solutions as monitors of fluorine in evolved granitic and pegmatitic melts. Am Mineral 86:225–233Google Scholar
  113. London D, Morgan GBVI, Paul KA, Guttery BM (2012) Internal evolution of a miarolitic granitic pegmatite: the Little Three mine, Ramona, California (USA). Can Mineral 50:1025–1054Google Scholar
  114. Lopez-Moro FJ, Polonio FG, Gonzalez TL, Contreras JLS, Fernandez AF, Benito MCM (2017) Ta and Sn concentration by muscovite fractionation and degassing in a lens-like granite body: the case study of the Penouta rare-metal albite granite (NW Spain). Ore Geol Rev 82:10–30Google Scholar
  115. Lukkari S, Holtz F (2007) Phase relations of a F-enriched peraluminous granite: an experimental study of the Kymi topaz granite stock, southern Finland. Contrib Mineral Petrol 153:273–288Google Scholar
  116. MacKenzie DE, Black LP, Sun S (1988) Origin of alkali-feldspar granites: an example from the Poimena granite, northeastern Tasmania, Australia. Geochim Cosmochim Acta 52:2507–2524Google Scholar
  117. Manning DCA (1981a) The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or, with excess water at 1 kb. Contrib Mineral Petrol 76:206–215Google Scholar
  118. Manning DCA (1981b) The application of experimental studies in determining the origin of topaz–quartz–tourmaline rock and tourmaline–quartz rock. Ann Conf Ussher Soc 5:121–127Google Scholar
  119. Manning DCA (1982) An experimental study of the effect of fluorine on the crystallization of granitic melts. In: Evans AM (ed) Metallization associated with acid magmatism. John Wiley, Chichester, pp 191–203Google Scholar
  120. Menzies MA (1995) The mineralogy, geology and occurrence of topaz. Mineral Rec 26:5–53Google Scholar
  121. Mercer CN, Hofstra AH, Todorov TI, Roberge J, Burgisser A, Adams DT, Cosca M (2015) Pre-eruptive conditions of the Hideaway Park topaz rhyolite: insights into metal source and evolution of magma parental to the Henderson porphyry molybdenum deposit, Colorado. J Petrol 56:645–679Google Scholar
  122. Miller CF, Stoddard EF, Bradfish LJ, Dollase WA (1981) Composition of plutonic muscovite: genetic implications. Can Mineral 19:25–34Google Scholar
  123. Mohamed MA (2013) Immiscibilty between silicate magma and aqueous fluids in Egyptian rare-metal granites: melt and fluid inclusions study. Arab J Geosci 1:4021–4033Google Scholar
  124. Monier G (1985) Cristallochimie des micas des leucogranites : Nouvelles données expérimentales et applications pétrologiques. State thesis, University of Orléans, France, 299pGoogle Scholar
  125. Monier G, Tegyey M (1985) Etude pétrographique préliminaire, Forage Echassières, n°1, rapport d’exécution et descriptions préliminaires, thème 8 : Evolution géochimique et métallogénique GPF3. Doc BRGM 100:41–93Google Scholar
  126. Monier G, Mergoil-Daniel J, Labernardiere H (1984) Générations successives de muscovites et feldspaths potassiques dans les leucogranites du massif de Millevaches (Massif Central Français). Bull Mineral 107:55–68Google Scholar
  127. Morteani G, Voropaev A (2007) The pink topaz-bearing calcite, quartz, white mica veins from Ghundao Hill (north west Frontier Province, Pakistan): K/Ar age, stable isotope and REE data. Mineral Petrol 89:31–44Google Scholar
  128. Morteani G, Bello RMS, Gandini AL, Preinfalk C (2002) P, T, X conditions of crystallization of imperial topaz from Ouro Preto (Minas Gerais, Brazil). Fluid inclusions, oxygen isotope thermometry, and phase relations. Schweiz Mineral Petrogr Mitt 82:455–466Google Scholar
  129. Mourey Y (1985) Les indices Sn. W. Cu. Zn. liés au magmatisme stéphano-permien dans le sud du faisceau synclinal de la Somme (Morvan). 3rd cycle thesis, INPL, Nancy, France, 335pGoogle Scholar
  130. Nalini-Junior HA, Bilal E, Correia-Neves JM (2000) Syncollisional peraluminous magmatism in the Rio Doce region: mineralogy, geochemistry and isotopic data for the neoproterozoic Urucum suite (eastern Minas Gerais state, Brazil). Rev Bras Geocienc 30:120–125Google Scholar
  131. Naumov VB, Kovalenko VI, Ivanova GF, Vladykin NV (1977) Genesis of topaz according to the data on microinclusions. Geochem Int 14:1–8Google Scholar
  132. Neiva AMR, Ramos JMF (2010) Geochemistry of granitic aplite–pegmatite sills and petrogenetic links with granites, Guarda–Belmonte area, Central Portugal. Eur J Mineral 22:837–854Google Scholar
  133. Northrup PA, Leinenweber K, Parise JB (1994) The location of H in the high-pressure synthetic Al2SiO4(OH)2 topaz analogue. Am Mineral 79:401–404Google Scholar
  134. Olsen DR (1971) Origin of topaz deposits near Ouro Petro, Minas Gerais, Brazil. Econ Geol 66:627–631Google Scholar
  135. Orozco-Esquivel MT, Nieto-Samaniego AF, Alaniz-Alvares SA (2002) Origin of rhyolitic lavas in the Mesa Central, Mexico, by crustal melting related to extension. J Volcan Geoth Res 118:37–56Google Scholar
  136. Peretyazhko IS, Savina EA (2010) Sinks of liquid immiscibility in ongonite magma: evidence from the study of melt and fluid inclusions in rocks of the Ary–Bulak massif (eastern Transbaikalia). Dokl Earth Sci 433:1077–1082Google Scholar
  137. Peretyazhko IS, Zagorsky VY, Smirnov SZ, Mikhailov MY (2004) Conditions of pocket formation in the Oktyabrskaya tourmaline-rich gem pegmatite (the Malkhan field, central Transbaikalia, Russia). Chem Geol 210:91–111Google Scholar
  138. Peretyazhko IS, Zagorsky VY, Tsareva EA, Sapozhnikov AN (2007) Immiscibility of calcium fluoride and aluminosilicate melts in ongonite from the Ary–Bulak intrusion, eastern Transbaikal region. Dokl Earth Sci 413:315–320Google Scholar
  139. Pichavant M, Boher M, Stenger JF, Aïssa M, Charoy B (1987) Relations de phase des granites de Beauvoir à 1 et 3 kbar en conditions de saturation en H2O. Géol France 2-3:77–86Google Scholar
  140. Pollard PJ (1995) A special issue devoted to the geology of rare metal deposits, geology of rare metal deposits: an introduction and overview. Econ Geol 90:489–494Google Scholar
  141. Price JG, Castor SB, Miller DM (1992) Highly radioactive topaz rhyolites of the Toano Range, northeastern Nevada. Am Mineral 77:1067–1073Google Scholar
  142. Raimbault L, Burnol L (1998) The Richemont rhyolite dyke, Massif Central, France: a subvolcanic equivalent of rare-metal granites. Can Mineral 36:265–282Google Scholar
  143. Raimbault L, Cuney M, Azencott C, Duthou JL, Joron JL (1995) Geochemical evidence for a multistage magmatic genesis of Ta-Sn-Li mineralization in the granite at Beauvoir, French Massif Central. Econ Geol 90:548–576Google Scholar
  144. Rodríguez-Ríos R, Aguillón-Robles A, Leroy JL (2007) Evolución petrológica y geoquímica de un complejo de domos topacíferos en el Campo Volcánico de San Luis Potosí (México). Rev Mex Cienc Geol 24:328–343Google Scholar
  145. Rolin P, Colchen M (2001) Les cisaillements hercyniens de la Vendée au Limousin. Géol France 1-2:87–116Google Scholar
  146. Rolin P, Marquer D, Colchen M, Cartannaz C, Cocherie A, Thiéry V, Quenardel JM, Rossi P (2009) Famenno-carboniferous (370–320 ma) strike slip tectonics monitored by syn-kinematic plutons in the French Variscan belt (Massif Armoricain and French Massif Central). Bull Soc Géol Fr 180:231–246Google Scholar
  147. Rosenberg PE (1972) Compositional variations in synthetic topaz. Am Mineral 57:169–187Google Scholar
  148. Sainsbury CL (1960) Metallization and post-mineral hypogene argillization, Lost River tin mine, Alaska. Econ Geol 55:1478–1506Google Scholar
  149. Seedorff E (1988) Cyclic development of hydrothermal mineral assemblages related to multiple intrusions at the Henderson porphyry molybdenum deposit, Colorado. Can Inst Min Metall Spec Vol 39:367–393Google Scholar
  150. Seedorff E, Einaudi MT (2004a) Henderson porphyry molybdenum system, Colorado: I. Sequence and abundance of hydrothermal mineral assemblages, flow paths of evolving fluids, and evolutionary style. Econ Geol 99:3–37Google Scholar
  151. Seedorff E, Einaudi MT (2004b) Henderson porphyry molybdenum system, Colorado: II. Decoupling of introduction and deposition of metals during geochemical evolution of hydrothermal fluids. Econ Geol 99:39–72Google Scholar
  152. Shchekina TI, Gramenitskiy EN, Alferyeva YO (2013) Leucocratic magmatic melts with the maximum fluorine concentrations: experiment and relations in nature. Petrol 21:457–470Google Scholar
  153. Shibue Y, Iiyama J (1984) Occurrence of topaz from silica and alunite deposits at the Ugusu mine and its implication for high fluoride concentration in fossil geothermal water. Geochem J 18:209–214Google Scholar
  154. Simons B, Andersen JCØ, Shail RK, Jenner FE (2017) Fractionation of Li, Be, Ga, Nb, Ta, In, Sn, Sb, W and Bi in the peraluminous early Permian Variscan granites of the Cornubian batholith: precursor processes to magmatic–hydrothermal mineralisation. Lithos 278-281:491–512Google Scholar
  155. Soufi M (1988) Etude des magmatismes leucogranitique et ongonitique de Blond (Haut Limousin-Massif Central Français). Relations avec une mise en place syntectonique du massif granitique. Unpublished PhD thesis, Henri Poincaré University, Vandoeuvre-lès-Nancy, France, 304pGoogle Scholar
  156. Soufi M (2000) Utilisation des micas (Fe, Li) syncinématiques comme traceurs géochimiques des fabriques magmatiques : application au massif granitique de Blond (Haut Limousin, Massif Central Français). Not Mém Serv Géol Maroc 408:211–219Google Scholar
  157. Soufi M (2003) Les topazes des ongonites de Blond (Haut Limousin, Massif Central français). 3th International 3MA Colloquium: Magmatism, Metamorphism and Associated Mineralizations, Casablanca, Morocco 8–10 May 2003, p 54Google Scholar
  158. Soufi M (2007) Les roches leucogranitiques à topaze de Blond (Massif Central français). 5th International 3MA Colloquium: Magmatism, Metamorphism and Associated Mineralizations, Fez, Morocco 10–12 May 2007, p 178–179Google Scholar
  159. Soufi M (2015) Evidence for the role of primary andalusite breakdown during the Li-Fe micas recrystallization in the Blond granite (NW French Massif Central). Not Mém Serv Géol Maroc 579:147–161Google Scholar
  160. Soufi M, Remmal T (2016) Geochemical evolution of magmatic foliations in Blond granitic stock (Northwest Limousin, Massif Central, France). Geo-Temas 16:29–33Google Scholar
  161. Soufi M, Remmal T, El Amrani El Hassani I, El Kamel F (2015) Dynamique de mise en place du massif granitique de Blond (Haut Limousin—Massif Central Français). Bull Inst Sci Rabat, Sect Sci Terre 37:25–33Google Scholar
  162. Soufi M, Remmal T, Lakroud K (2017) Origin of topaz in the highly evolved F-rich granitic rocks from Blond (NW Massif Central, France). The First ASRO Geological Congress, El Jadida-Morocco, 15-17 March 2017, p 85–86Google Scholar
  163. Speer JA, Becker SW (1992) Evolution of magmatic and subsolidus AFM mineral assemblages in granitoid rocks: biotite, muscovite, and garnet in the Cuffytown Creek pluton, South Carolina. Am Mineral 77:821–833Google Scholar
  164. Stemprok M (1991) Ongonite from Ongon Khairkhan, Mongolia. Mineral Petrol 43:255–273Google Scholar
  165. Stemprok M, Pivec E, Langrova A (2005) The petrogenesis of a wolframite-bearing greisen in the Vykmanov granite stock, western Krusne hory pluton (Czech Republic). Bull Geosci 80:163–184Google Scholar
  166. Stemprok M, Dolejs D, Müller A, Seltmann R (2008) Textural evidence of magma decompression, devolatilization and disequilibrium quenching: an example from the western Krusné hory/Erzgebirge granite pluton. Contrib Mineral Petrol 155:93–109Google Scholar
  167. Stern LA, Brown GE, Bird DK, Jahns RH, Foord EE, Shigley JE, Spaulding LB (1986) Mineralogy and geochemical evolution of the Little Three pegmatite–aplite layered intrusive, Ramona, California. Am Mineral 71:406–427Google Scholar
  168. Stone M (1992) The Tregonning granite: petrogenesis of Li-mica granites in the Cornubian batholith. Mineral Mag 56:141–155Google Scholar
  169. Stone M, George MC (1978) Amblygonite in leucogranites of the Tregonning–Godolphin granite, Cornwall. Mineral Mag 42:151–152Google Scholar
  170. Taylor RP (1992) Petrological and geochemical characteristics of the Pleasant Ridge zinnwaldite–topaz granite, southern New Brunswick, and comparisons with other topaz-bearing felsic rocks. Can Mineral 30:895–921Google Scholar
  171. Thomas R (1979) Untersuchung von eisnschlussen zur thermodynamischen und physikochemischen charakteristik lagerstattenbildender losungen und prozesse im magmatischen und postmagmatischen berieich. Unpublished PhD thesis, Bergakademie Freiberg, Germany, 245 + 83pGoogle Scholar
  172. Thomas R (1982) Ergebnisse der thermobarogeochemischen Untersuchungen an Fluessigkeitseinschluessen in Mineralen der postmagmatischen Zinn-Wolfram-Mineralization des Erzgebirges. Freiberger Forsch C370:1–85Google Scholar
  173. Thomas R, Davidson P (2013) The missing link between granites and granitic pegmatites. J Geosci 58:183–200Google Scholar
  174. Thomas R, Klemm W (1997) Microthermometric study of silicate melt inclusions in Variscan granites from SE Germany: volatile contents and entrapment conditions. J Petrol 38:1753–1765Google Scholar
  175. Thomas R, Rhede D, Trumbull RB (1996) Microthermometry of volatile-rich silicate melt inclusions in granitic rocks. Z Geol Wiss 24:505–526Google Scholar
  176. Thomas R, Webster JD, Heinrich W (2000) Melt inclusions in pegmatite quartz: complete miscibility between silicate melts and hydrous fluids at low pressure. Contrib Mineral Petrol 139:394–401Google Scholar
  177. Thomas R, Förster HJ, Rickers K, Webster JD (2005) Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolved tin-granite magmas: a melt/fluid inclusion study. Contrib Mineral Petrol 148:582–601Google Scholar
  178. Thomas R, Webster JD, Rhede D, Seifert S, Rickers K, Förster HJ, Heinrich W, Davidson P (2006) The transition from peraluminous to peralkaline granitic melts: evidence from melt inclusions and accessory minerals. Lithos 91:137–149Google Scholar
  179. Vallance J, Cathelineau M, Marignac C, Boiron MC, Fourcade S, Martineau F, Fabre C (2001) Microfracturing and fluid mixing in granites: W-(Sn) ore deposition at Vaulry (NW French Massif Central). Tectonophysics 336:43–61Google Scholar
  180. Van Lichtervelde M (2006) Métallogénie du tantale: application aux différents styles de minéralisations en tantale dans la pegmatite de Tanco, Manitoba, Canada. PhD thesis, Paul Sabatier University, Toulouse III, France, 249pGoogle Scholar
  181. Veksler VI (2004) Liquid immiscibility and its role at the magmatic-hydrothermal transition: a summary of experimental studies. Chem Geol 210:7–31Google Scholar
  182. Veksler VI, Thomas R (2002) An experimental study of B-, P- and F-rich synthetic granite pegmatite at 0.1 and 0.2 GPa. Contrib Mineral Petrol 143:673–683Google Scholar
  183. Veksler VI, Dorfman AM, Dulski P, Kamenetsky VS, Danyushevsky LV, Jeffries T, Dingwell DB (2012) Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite. Geochim Cosmochim Acta 79:20–40Google Scholar
  184. Wang D, Liu C, Shen W, Min M, Ling H (1995) Geochemical characteristics and genesis of topaz-bearing porphyries in Yangbin area of Taishun county, Zhejiang province. Chin J Geochem 14:13–24Google Scholar
  185. Wang F, Bagas L, Jiang S, Liu Y (2017) Geological, geochemical, and geochronological characteristics of Weilasituo Sn-polymetal deposit, Inner Mongolia, China. Ore Geol Rev 80:1206–1229Google Scholar
  186. Webster JD (1990) Partitioning of F between H2O and CO2 fluids and topaz rhyolite melt. Contrib Mineral Petrol 104:424–438Google Scholar
  187. Webster JD, Thomas R, Förster HJ, Seltmann R, Tappen C (2004) Geochemical evolution of halogen-enriched granite magmas and mineralizing fluids of the Zinnwald tin–tungsten mining district, Erzgebirge, Germany. Miner Depos 39:452–472Google Scholar
  188. Webster JD, Tappen CM, Mandeville CW (2009) Partitioning behavior of chlorine and fluorine in the system apatite-melt-fluid. II: felsic silicate systems at 200 MPa. Geochim Cosmochim Acta 73:559–581Google Scholar
  189. Weidner JR, Martin RF (1987) Phase equilibria of a fluorine-rich leucogranite from the St. Austell pluton, Cornwall. Geochim Cosmochim Acta 51:1591–1597Google Scholar
  190. Weinhold G (2002) Die Zinnerz-Lagerstätte Altenberg/Osterzgebirge. In: Sächsisches Landesamt für Umwelt und Geologie (Hrsg.): Bergbau in Sachsen. Band 9, 289pGoogle Scholar
  191. Williamson BJ, Stanley CJ, Wilkinson JJ (1997) Implications from inclusions in topaz for greisenization and mineralization in the Hensbarrow topaz granite, Cornwall, England. Contrib Mineral Petrol 127:119–128Google Scholar
  192. Wright JB (1974) Tuffisite with topaz from the Nigerian younger granite province, the Balfour Hill sediments. Geol Mag 111:337–342Google Scholar
  193. Wunder B, Rubie DC, Ross CR II, Medenbach O, Seifert F, Werner S (1993) Synthesis, stability, and properties of Al2SiO4(OH)2: a fully hydrated analogue of topaz. Am Mineral 78:285–297Google Scholar
  194. Wunder B, Andrut M, Wirth R (1999) High-pressure synthesis and properties of OH-rich topaz. Eur J Mineral 11:803–813Google Scholar
  195. Xie L, Wang RC, Chen J, Zhu JC, Zhang WL, Lu JJ, Zhang RQ (2013) A tin-mineralized topaz rhyolite dike with coeval topaz granite enclaves at Qiguling in the Qitianling tin district, southern China. Lithos 170:252–268Google Scholar
  196. Xie L, Wang RC, Groat LA, Zhu JC, Huang FF, Cempírek J (2015) A combined EMPA and LA-ICP-MS study of Li-bearing mica and Sn–Ti oxide minerals from the Qiguling topaz rhyolite (Qitianling District, China): the role of fluorine in origin of tin mineralization. Ore Geol Rev 65:79–792Google Scholar
  197. Xiong XL, Zhu JC, Rao B (1996) A preliminary experimental investigation on genesis of topaz greisens. Chin Sci Bull 41:917–919Google Scholar
  198. Xiong XL, Zhao ZH, Zhu JC, Rao B (1999) Phase relations in albite granite–H2O–HF system and their petrogenetic application. Geochem J 33:199–214Google Scholar
  199. Xiong XL, Rao B, Chen FR, Zhu JC, Zhao ZH (2002) Crystallization and melting experiments of a fluorine-rich leucogranite from the Xianghualing pluton, South China, at 150 MPa and H2O-saturated conditions. J Asian Earth Sci 21:175–188Google Scholar
  200. Yu JH, O’Reilly SY, Zhao L, Griffin WL, Zhang M, Zhou XM, Jiang SY, Wang LJ, Wang RC (2007) Origin and evolution of topaz-bearing granites from the Nanling Range, South China: a geochemical and Sr–Nd–Hf isotopic study. Mineral Petrol 90:271–300Google Scholar
  201. Zhang RY, Liou JG, Shu JF (2002) Hydroxyl-rich topaz in high-pressure and ultrahigh-pressure kyanite quartzites, with retrograde woodhouseite, from the Sulu terrane, eastern China. Am Mineral 87:445–453Google Scholar
  202. Zhang C, Holtz F, Ma C, Wolff PE, Li X (2012) Tracing the evolution and distribution of F and Cl in plutonic systems from volatile-bearing minerals: a case study from the Liujiawa pluton (Dabie orogen, China). Contrib Mineral Petrol 164:859–879Google Scholar
  203. Zhu ZY, Wang RC, Che XD, Zhu JC, Wei XL, Huang X (2015) Magmatic-hydrothermal rare-element mineralization in the Songshugang granite (northeastern Jiangxi, China): insights from an electron-microprobe study of Nb–Ta–Zr minerals. Ore Geol Rev 65:749–760Google Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  • Mohamed Soufi
    • 1
  • Toufik Remmal
    • 1
  • Iz Eddine EL Amrani El Hassani
    • 2
  • Samira Makhoukhi
    • 1
  1. 1.Faculty of Sciences Aïn ChockHassan II University of CasablancaMaârifMorocco
  2. 2.Department of Earth Sciences, Scientific InstituteMohammed V-Agdal UniversityRabatMorocco

Personalised recommendations