Advertisement

Metasomatism and origin of glass in the lithospheric mantle xenoliths beneath Ain Temouchent area (North-West Algeria)

  • Mohamed Chakib Lahmer
  • Abdelmadjid Seddiki
  • Mohamed Zerka
  • Jean-Yves Cottin
  • Mohammed Tabeliouna
Original Paper

Abstract

A spinel ± amphibole ± feldspar bearing Iherzolites, a spinel ± amphibole ± feldspar bearing harzburgites, and a spinel ± amphibole ± phlogopite bearing wehrlites are metasomatized peridotitic mantle xenoliths from Ain Temouchent volcanic complex (North-West Algeria). These xenoliths are metamorphic/deformed rocks with a strong planar fabric typical of mantle tectonites. The wehrlites are not the result of a simple model of partial melting. The spinel ± amphibole ± feldspar bearing harzburgites and lherzolites exhibit asymmetric concave-shaped REE patterns. These indicate that an earlier partial melting event was followed by metasomatic processes. The wehrlites have higher REE concentrations and LREE/HREE fractionations, indicating a sequential evolution of wehrlites from previous refractory material with melting as an addition process. This process reflects the interaction of the lithospheric mantle beneath the Ain Temouchent area with basaltic melt. Metasomatism is expressed by the formation of amphibole, phlogopite, and increased abundances of clinopyroxene at the expense of orthopyroxene, in lherzolite and harzburgite. In the Ain Temouchent area, metasomatizing agents are Na-alkali silicates. The similarities observed between the glasses studied in this paper, and the basaltic host rocks of the Ain Temouchent area, may suggest a common mantle source, or with chemical similarities but with relatively different evolutions pathways. The formation of glass in wehrlites from the Ain Temouchent area has an origin formed by the breakdown of amphibole or phlogopite as a result of decompressional melting and production of silica-undersaturated glasses. The glass reacts with essentially orthopyroxene to produce silica-rich glasses. This study has contributed to highlighting a relationship between glass, and the processes that caused the formation of metasomatic phases.

Keywords

Mantle xenoliths Partial melting Metasomatic process Basaltic melt Silicic glass AinTemouchent area 

Notes

Acknowledgements

Our special thanks go to Peter Bowden, for revising the English language. He is “Professeur Invité” in the Département de Géologie at Université de Saint Etienne and Editor-in-Chief of the Journal of African Earth Sciences from 1993 to 2001 and Senior Lecturer and coordinator for the BSc Geochemistry degree at the University of St Andrews, Scotland, from 1987 to 1998. He is a specialist in African Geology.

References

  1. Amundsen HEF (1987) Peridotite xenoliths from Gran Canaria, Canary Islands; evidence for metasomatic processes and partial melting in the lower oceanic crust. Neues Jahrbuch fur Mineralogie 156:121–140Google Scholar
  2. Baker MB, Hirschmann MM, Ghiorso MS, Stolper EM (1995) Compositions of near-solidus peridotite melts from experiments and thermodynamic calculations. Nature 375:308–311CrossRefGoogle Scholar
  3. Batanova VG, Savelieva GN (2009) Melt migration in the mantle beneath spreading zones and formation of replacive dunites: a review. Russ Geol Geophys 50(9:763–778CrossRefGoogle Scholar
  4. Bendoukha R (2008) Etude dynamique, pétrographique et géochimique du volcanisme Plio-quaternaire d'Oranie (Algérie occidentale). Thèse Doct. Etat, USTHB, Alger, 226 pGoogle Scholar
  5. Bendoukha R, Megartzi M, Cottin JY, Tabeliouna M (2009) Nouvelles données sur les caractères dynamiques et géochimiques du volcanisme alcalin mio-plio-quaternaire de l'Oranie (Algérie nord-occidentale). Bulletin du Service Géologique National 20(3):1–34Google Scholar
  6. Bodinier JL, Dupuy C, Dostal J (1988) Geochemistry and petrogenesis of eastern Pyrenean peridotites. Geochim Cosmochim Acta 52:2893–2907CrossRefGoogle Scholar
  7. Bodinier JL, Menzies MA, Thirlwall M F (1991) Continental to oceanic mantle transition–REE and Sr–Nd isotopic geochemistry of the Lanzo Lherzolite massif. J Petrol, special issue, Orogenic Lherzolites and Mantle Processes, 175–189Google Scholar
  8. Cabanes N (1988) Contribution à l'étude des zones de cisaillement dans le manteau supérieur. Analyse texturale, pétrologique et géochimique deux gisements de péridotite en enclaves dans les basaltes alcalins, Monferrier (Hérault, France) et San Quintin (Baja,Californie). Thèse Université, Montpellier, 288 pGoogle Scholar
  9. Chalot-Prat F, Arnold M (1999) Immiscibility between calcio-carbonatitic and silicate melts and related wall rock reactions in the upper mantle : a natural case study from Romanian mantle xenoliths. Lithos 46:627–659CrossRefGoogle Scholar
  10. Chazot G, Menzies MA, Harte B (1996) Determination of partition coefficients between apatite, clinopyroxene, amphibole and melt in natural spinel lherzolites from Yemen : implications for wet melting of the lithospheric mantle. Geochim Cosmochim Acta 60:423–437CrossRefGoogle Scholar
  11. Ciuffi S, Rivalenti G, Vannucci R, Zanetti A, Mazzucchelli M, Cingolani CA (2002) Are the glasses in mantle xenoliths witness of the metasomatic agent composition? Goldschmidt Conference Abstracts, A143Google Scholar
  12. Coltorti M, Bonadiman C, Hinton RW, Siena F, Upton BGJ (1999) Carbonatite metasomatism of the oceanic upper mantle: evidence from clinopyroxenes and glasses in ultramafic xenoliths of Grande Comore, Indian Ocean. J Petrol 40(1):133–165CrossRefGoogle Scholar
  13. Coltorti M, Beccaluva L, Bonadiman C, Salvini L, Siena F (2000) Glasses in mantle xenoliths as geochemical indicators of metasomatic agents. Earth Planet Sci Lett 183(1–2):303–320CrossRefGoogle Scholar
  14. Coulon C, Megartzi M, Fourcarde S, Maury RC, Bellon H, Louni-Hacini A, Cotton J, Coutelle A, Hermitte D (2002) Post-collisional transition from calcalkaline to alkaline volcanism during the Neogene in Oranie (Algeria): magmatic expression of a slab breakoff. Lithos 62:87–110CrossRefGoogle Scholar
  15. Downes H, Dupuy C (1987) Textural, isotopic and REE variations in spinel peridotite xenoliths, massif central, France. Earth Planet Sci Lett 82:121–135CrossRefGoogle Scholar
  16. Downes H, Bodinier JL, Thirwall M F, Lorand J P, Fabries J (1991) REE and Sr–Nd isotopic geochemistry of eastern Pyrenean peridotite massifs: sub-continental lithospheric mantle modified by continental magmatism. Journal of Petrology, special issue, Orogenic Lherzolites and Mantle Processes, 97–116Google Scholar
  17. Downes H (2001) Formation and modification of the shallow sub-continental lithospheric mantle: a review of geochemical evidence from ultramafic xenoliths suites and tectonically emplaced ultramafic massifs of western and Central Europe. J Petrol 42(1):233–250CrossRefGoogle Scholar
  18. Downes H, MacDonald R, Upton BGJ, Cox KG, Bodinier JL, Mason PRD, James D, Hill PG, Hearn BC (2004) Ultramafic xenoliths from the Bearpaw Mountains, Montana, USA: evidence for multiple metasomatic events in the lithospheric mantle beneath the Wyoming craton. J Petrol 45(8):1631–1662CrossRefGoogle Scholar
  19. Edgar AD, Lloyd FE, Forsyth DM, Barnett RL (1989) Origin of glass in upper-mantle xenoliths from the quaternary volcanics SE of gees, west Eifel, Germany. Contrib Mineral Petrol 103:277–286CrossRefGoogle Scholar
  20. Fabriès J, Bodinier JL, Dupuy C, Lorand JP, Benkerrou C (1989) Evidence for modal metasomatism in the orogenic spinel lherzolite body from Caussou (northeastern Pyrenees, France). J Petrol 30:176–199Google Scholar
  21. Fialin M, Wagner C (2015) Aluminum and iron behavior in glasses from destabilized spinels: a record of fluid/meltmineral interaction in mantle xenoliths from massif central, France. Am Mineral 100(7):1411–1423CrossRefGoogle Scholar
  22. Francis DM (1976) The origin of amphibole in lherzolite xenoliths from Nunivak Island, Alaska. J Petrol 17(3):357–378CrossRefGoogle Scholar
  23. Francis DM (1987) Mantle-melt interaction recorded in spinel lherzolite xenoliths from the Alligator Lake volcanic complex, Yukon, Canada. J Petrol 28:569–597CrossRefGoogle Scholar
  24. Frey FA, Green DH (1974) The mineralogy, geochemistry and origin of lherzolite inclusions in Victoria basanites. Geochim Cosmochim Acta 38:1023–1054CrossRefGoogle Scholar
  25. Gamble JA, Kyle PR (1987) The origins of glass and amphibole in spinel-wehrlite xenoliths from Forster crater, McMurdo volcanic group, Antarctica. J Petrol 28(5):755–779CrossRefGoogle Scholar
  26. Frezzotti ML, Andersen T, Neumann ER, Simonsen SL (2002a) Carbonatite melt-CO2 fluid inclusions in mantle xenoliths from Tenerife, Canary Islands : a story of trapping, immiscibility and fluid-rock interaction in the upper mantle. Lithos 64:77–96CrossRefGoogle Scholar
  27. Frezzotti ML, Touret JLR, Neumann ER (2002b) Ephemeral carbonate melts in the upper mantle: carbonate-silicate immiscibility in microveins and inclusions within spinel peridotite xenoliths, La Gomera, Canary Islands. Eur J Mineral 14:891–904CrossRefGoogle Scholar
  28. Gracia MO, Presti AA (1987) Glass in garnet pyroxenite xenoliths from Kaula Islands, Hawii: product of infiltration of host nephelinites. Geology 15:904–906CrossRefGoogle Scholar
  29. Grégoire M, Lorand JP, Cottin JY, Giret A, Mattielli N, Weis D (1997) Xenoliths evidence for a refractory oceanic mantle percolated by basaltic melts beneath the Kerguelen archipelago. Eur J Mineral 9:1085–1100CrossRefGoogle Scholar
  30. Grégoire M, Moine B, O'reilly SY, Cottin JY, Giret A (2000) Trace element residence and partitioning in mantle xenoliths metasomatised by high alkaline silicate and carbonate-rich melts (Kerguelen Islands, Indian Ocean). J Petrol 41:477–509CrossRefGoogle Scholar
  31. Grégoire M, Tinguely C, Bell DR, Le Roex AP (2005) Spinel lherzolite xenoliths from the premier kimberlite (Kaapvaal craton, South Africa): nature and evolution of the shallow upper mantle beneath the bushveld complex. Lithos 84:185–205CrossRefGoogle Scholar
  32. Hansteen TH, Andersen T, Neumann ER, Jelsma H (1991) Fluid and silicate melt inclusions in spinel lherzolite xenoliths from Hierro, Canary Islands: implications for mantle metasomatism. Contrib Mineral Petrol 107:242–254CrossRefGoogle Scholar
  33. Hauri EH, Shimizu N, Dieu JJ, Hart SR (1993) Evidence for hotspot-related carbonatite metasomatism in the oceanic upper mantle. Nature 365(6443):221–227Google Scholar
  34. Ionov DA, Hofmann AW, Shimizu N (1994) Metasomatism-induced melting in mantle xenoliths from Mongolia. J Petrol 35(3):753–785CrossRefGoogle Scholar
  35. Ionov DA, Chanefo I, Bodinier JL (2005) Origin of Fe-rich lherzolites and wehrlites fromTok, SE Siberia by reactive melt percolation in refractory mantle peridotites. Contrib Mineral Petrol 150:335–353CrossRefGoogle Scholar
  36. Ishimaru S, Arai S (2005) Silicic glasses trapped in peridotite xenoliths: an insight into melting and metasomatism processes in mantle peridotite. Japanese Mag Mineral Petrol Sci 34(4):205–215Google Scholar
  37. Johnson K (1990) The nature and evolution of the lithosphere beneath Lanzarote, Canary Islands : evidence from upper mantle xenoliths. Cand.Scient.Thesis, University of Oslo, 106 pGoogle Scholar
  38. Kelemen PB (1990) Reaction between ultramafic rocks and fractionating basaltic magmas I. Phase relations, the origin of calc-alkaline magma series and the formation of discordant dunite. J Petrol 31:51–98CrossRefGoogle Scholar
  39. Kiseeva ES, Kamenetsky VS, Yaxley GM, Shee SR (2017) Mantle melting versus mantle metasomatism—“the chicken or the egg” dilemma. Chem Geol 455:120–130CrossRefGoogle Scholar
  40. Klügel A, Sachs PM, Schmincke HU (1996) How long did mantle xenoliths from La Palma (Canary Islands) reside in the transporting magma. In: “Chapman Conf. Shallow level Processes Ocean Islands Magmatism”, Abstract, p 21Google Scholar
  41. Laurora A, Mazzucchelli M, Rivalenti G, Vannucci R, Zanetti A, Barbieri MA, Cingolani C (2001) Metasomatism and melting in carbonated peridotite xenoliths from the mantle wedge: the Gobernador Gregores case (southern Patagonia). J Petrol 42:69–87CrossRefGoogle Scholar
  42. Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27:745–750CrossRefGoogle Scholar
  43. Maury RC, Fourcade S, Coulon C, El-Azzouzi M, Bellon H, Coutelle A, Ouabadi A, Semroud B, Megartsi M, Cotten J, Belanteur O, Louni-Hacini A, Piqué A, Capdevila R, Hernandez J, Rehault JP (2000) Post-collisional Neogene magmatism of the Mediterranean Maghreb margin : a consequence of a slab breakoff. CR Acad Sci Paris 331:159–173CrossRefGoogle Scholar
  44. McDonough WF, Sun SS (1995) The composition of the earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  45. Médard E, Sshmidt MW, Schiano P, Ottolini L (2006) Melting of amphibole-bearing wehrlites : an experimental study on the origin of ultra-calcic nepheline-normative melts. J Petrol 47(3):481–504CrossRefGoogle Scholar
  46. Megartsi M (1985) Le volcanisme mio-plioquaternaire de I'Oranie nord-occidentale : géologie, pétrologie, géodynamique. Thèse Doct. Etat, USTHB, Alger, 29b pGoogle Scholar
  47. Mercier JCC, Nicolas A (1975) Textures and fabrics of upper mantle peridotites as illustrated by xenoliths from basalts. J Petrol 16:454–486CrossRefGoogle Scholar
  48. Miller C, Zanetti A, Thöni M, Konzett J, Klötzli U (2012) Mafic and silica-rich glasses in mantle xenoliths from Wau-en-Namus, Libya: textural and geochemical evidence for peridotite–melt reactions. Lithos 128(131):11–26CrossRefGoogle Scholar
  49. Moine BN, Cottin JY, Sheppard SMF, Grégoire M, O’Reilly S (2000) Incompatible trace element and isotopic (D/H) characteristics of amphibole- and phlogopite-bearing ultramafic to mafic xenoliths from Kerguelen Islands (TAAF, South Indian Ocean). Eur J Mineral 12:761–777CrossRefGoogle Scholar
  50. Moine BN, Grégoire M, O’reilly SY, Sheppard SMF, Cottin JY (2001) High strength element (HFSE) fractionation in the upper mantle: evidence from amphibole-rich composite mantle from the Kerguelen Islands (Indian Ocean). J Petrol 42:2145–2167CrossRefGoogle Scholar
  51. Moine BN, Grégoire M, O’Reilly SY, Delpech G, Sheppard SMF, Lorand JP, Renac C, Giret A, Cottin JY (2004) Carbonatite melt in oceanic upper mantle beneath the Kerguelen Archipelago. Lithos 75:239–252CrossRefGoogle Scholar
  52. Navon O and Stolper E (1987) Geochemical consequences of melt percolation: the upper mantle as chromatographic column. J Geol 95:285–307.Google Scholar
  53. Neumann ER, Wulff-Pedersen E, Johnsen K, Krogh E (1995) Petrogenesis of spinel harzburgite and dunite suite xenoliths from Lanzarote, eastern Canary Islands: implications for the upper mantle. Lithos 35:83–107CrossRefGoogle Scholar
  54. Neumann ER, Wulff-Pedersen E (1997) The origin of highly silicic melts in mantle xenoliths from the Canary Islands. J Petrol 38:1513–1539CrossRefGoogle Scholar
  55. Neumann E-R, Wulff-Pedersen E, Pearson NJ, Spenser EA (2002) Mantle xenoliths from Tenerife (Canary Islands): evidence for reactions between mantle peridotites and silicic carbonatite melts inducing Ca metasomatism. J Petrol 43:825–857CrossRefGoogle Scholar
  56. Remaïdi M (1993) Etude pétrologique et géochimique d’une association de péridotites réfractaires-pyroxénites dans le massif de Ronda (Espagne). Implications pour les mécanismes de circulation des magmas dans le manteau supérieur. Thèse de Doct., Univ.de Montpellier, 360 p.Google Scholar
  57. Sadran G (1958) Les formations volcaniques tertiaires et quaternaires du Tell oranais. Publ. Serv. Carte Géol., Algérie, nouvelle série, bull. no 18, 533p.Google Scholar
  58. Scambelluri M, Vannucci R, De Stefano A, Rivalenti G (2009) CO2 fluid and silicate glass as monitors of alkali basalt/peridotite interaction in the mantle wedge beneath Gobernador Gregores, southern Patagonia. Lithos 107(1):121–133CrossRefGoogle Scholar
  59. Schiano P, Clocchiatti R, Joron JL (1992) Melt fluid inclusions in basalts and xenoliths from Tahaa Island, society archipelago: evidence for a metasomatized upper mantle. Earth Planet Sci Lett 111:69–82CrossRefGoogle Scholar
  60. Schiano P, Clocchiatti R (1994) Worldwild occurrence of silica-rich melts in sub-continental and sub-oceanic mantle minerals. Nature 368:621–624CrossRefGoogle Scholar
  61. Schiano P, Clocchiatti R, Shimizu N, Weis D, Matielli N (1994) Cogenetic silica-rich and carbonate-rich melts trapped in mantle minerals in Kerguelen ultramafic xenoliths: implications for metasomatism in the oceanic upper mantle. Earth Planet Sci Lett 123:167–178CrossRefGoogle Scholar
  62. Schiano P, Bourdon B, Clocchiatti R, Massare D, Varela ME, Bottinga Y (1998) Low-degree partial melting trends recorded in upper mantle minerals. Earth Planet Sci Lett 160:537–550CrossRefGoogle Scholar
  63. Schiano P, Bourdon B (1999) On the preservation of mantle information in ultramafic nodules: glass inclusions within minerals versus interstitial glasses. Earth Planet Sci Lett 169:173–188CrossRefGoogle Scholar
  64. Sen G, Frey FA, Shimizu N, Leeman WP (1993) Evolution of the lithosphere beneath Oahu, Hawaï: Rare Earth Element abundance in mantle xenoliths. Earth Planet Sci Lett 119:53–69CrossRefGoogle Scholar
  65. Sen G, Macfaralane A, Srimal N (1996) Significance of rare hydrous alkaline melts in Hawaiian xenoliths. Contrib Mineral Petrol 122:415–427CrossRefGoogle Scholar
  66. Shaw CSJ, Thibault Y, Edgar AD, Lloyd FE (1998) Mechanisms of orthopyroxene dissolution in silica-undersaturated melts at 1 atmosphere and implications for the origin of silica-rich glass in mantle xenoliths. Contrib Mineral Petrol 132(4):354–370CrossRefGoogle Scholar
  67. Shaw CSJ, Klügel A (2002) Silica-rich glass around partly dissolved orthopyroxene crystals in peridotites. Mineral Petrol 74(2-4):163–187CrossRefGoogle Scholar
  68. Shaw CSJ, Eyzaguirre J, Fryer B, Gagnon J (2005) Regional variations in the mine ralogy of metasomatic assemblages in the mantl xenoliths from the West Eifel volcanic field, Germany. J Petrol 46(5):945–972CrossRefGoogle Scholar
  69. Siena F, Beccaluva L, Coltorti M, Marchesi S, Morra V (1991) Ridge hot-spot evolution of the Atlantic lithospheric mantle: evidence from Lanzarote peridotite xenoliths (Canary Islands). J Petrology, Spec. Lherzolites Issue, 271–290Google Scholar
  70. Song Y, Frey FA (1989) Geochemistry of peridotite xenoliths in basalt from Hannuoba, Eastern China: implications for subcontinental mantle heterogeneity. Geochim Cosmochim Acta 53:97–113CrossRefGoogle Scholar
  71. Teitchou MI, Grégoire M, Dantas C, Tchoua FM (2007) Le manteau supérieur à I’aplomb de la plaine de Kumba (ligne du Cameroun), d’après les enclaves de péridotitesà spinelle dans les laves basaltiques. Compt Rendus Géosci 339:101–109CrossRefGoogle Scholar
  72. Vannucci R, Bottazzi P, Wulff-Pedersen E, Neumann R (1998). Partitioning of REE, Y, Sr, Zr and Ti between clinopyroxene and silicate melts in the mantle under La Palma (Canary Island): implications for the nature of the metasomatic agents. Earth Planet Sci Lett, 158:39–51.Google Scholar
  73. Varelaab ME, Clocchiattib R, Kuratc G, Schianod P (1999) Silicic glasses in hydrous and anhydrous mantle xenoliths from Western Victoria, Australia: at least two different sources. Chemical Geology 153(1-4):151–169CrossRefGoogle Scholar
  74. Wagner C, Pascal ML (2010) Grain-scale processes of melting and metasomatism inferred from reaction textures in lherzolite xenoliths. Geophysical Research Abstracts 12:EGU2010–EGU3516Google Scholar
  75. Weber B (1991) Interactions basalte-lithosphère mantellique en contexte intraplaque océanique exemple de Tahiti et Tahaa (plaque rapide) e de la Réunion (plaque lente). Thèse Univ. Ecole des Mines, Paris, 222p.Google Scholar
  76. Wulff-Pedersen E, Neumann ER, Jensen BB (1996) The upper mantle under La Palma, Canary Islands: formation of Si-K-Na-rich melt and ist importance as a metasomatic agent. Contrib Mineral Petrol 125:113–139CrossRefGoogle Scholar
  77. Wulff-Pedersen E, Neumann E-R, Vanucci R, Bottazzi P, Ottolini L (1999) Silicic melts produced by reaction between peridotite and infiltrating basaltic melts: ion probe data on glasses and minerals in veined xenoliths from La Palma, Canary Islands. Contrib Mineral Petrol 137:59–82CrossRefGoogle Scholar
  78. Xu YG, Mercier J-CC, Menzies MA, Ross JV, Harte B, Lin C, Shi L (1996) K-rich glass-bearing wehrlite xenoliths from Yitong, northeastern China: petrological and chemical evidence for mantle metasomatism. Contrib Mineral Petrol 125:406–420CrossRefGoogle Scholar
  79. Xu Y, Menzies MA, Bodinier J-L, Bedini RM, Vroon P, Mercier J-C (1998a) Melt percolation-reaction atop the plume: evidence from poikiloblastic spinel harzburgite xenoliths from Boree (Massif Central, France). Contrib Mineral Petrol 132:65–84CrossRefGoogle Scholar
  80. Xu Y, Menzies MA, Vroon P, Mercier JC, Lin C (1998b) Texture-temperature-geochemistry relationships in the upper mantle as revealed from spinel peridotite xenoliths from Wangquing, NE China. J Petrol 39:469–493CrossRefGoogle Scholar
  81. Xu YG, Bodinier JL (2004) Contrasting enrichments in high- and low-temperature mantle xenoliths from Nushan, eastern China: results of a single metasomatic event during lithospheric accretion? J Petrol 45(2):321–341CrossRefGoogle Scholar
  82. Yaxley GM, Crawford AJ, Green DH (1991) Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia. Earth Planet Sci Lett 107:305–317CrossRefGoogle Scholar
  83. Yaxley GM, Kamenetsky V, Falloon TJ (1997) Glasses in mantle xenoliths from western Victoria, Australia, and their relevance to mantle processes. Earth Planet Sci Lett 148:433–446CrossRefGoogle Scholar
  84. Yaxley GM, Green DH, Kamenetsky V (1998) Carbonatite metasomatism in the Southeastern Australian lithosphere. J Petrol 39(11–12):1917–1930CrossRefGoogle Scholar
  85. Yaxley GM, Kamenetsky V (1999) In situ origin for glass in mantle xenoliths from South Eastern Australia: insights from trace element compositions of glasses and metasomatic phases. Earth Planet Sci Lett 172:97–109CrossRefGoogle Scholar
  86. Zerka M (2004) Le Manteau sous la Marge maghrébine: relations ‘infiltrations-réactions-cristallisation’ et cisaillements lithosphériques dans les enclaves ultramafiques du volcanisme alcalin plio-quaternaire d’Oranie, exemples des complexes d’Aïn Témouchent et de la Basse Tafna (Algérie nord-occidentale). Thèse Doct. Etat, Univ. Oran, 234.Google Scholar
  87. Zerka M, Cottin JY, Grégoire M, Lorand JP, Megartzi M, Midoun M (2002) Les xénolithes ultramafiques du volcanisme alcalin quaternaire d’Oranie (Tell, Algérie occidentale), témoins d’une lithosphère cisaillée et amincie. Comptes Rendus de Géoscience, 334:387–394.Google Scholar
  88. Zerka M, Cottin JY, Grégoire M, Tabeliouna M (2011) Les Xénolites mantelliques du volcanisme alcalin plio-quaternaire d’Ain Temouchent (Oranie Nord-Occidentale): témoins d’interactions manteau supérieur magmas basaltiques. Bulletin du Service Géologique National 22(1):3–25Google Scholar
  89. Zinngrebe E, Foley SF (1995) Metasomatism in mantle xenoliths from Gees, West Eifel, Germany: evidence from the genesis of calc-alkaline glasses and metasomatism Ca-enrichment. Contributions to Mineralogy and Petrology 122:79–96CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  1. 1.Laboratoire Géoressources et Risques Naturels (GEOREN)Université d’Oran2OranAlgeria
  2. 2.FSTUUniversité d’Oran2OranAlgeria
  3. 3.Univ-Lyon, UJM Saint Etienne, UMR 6524 “Magmas et Volcans”Saint EtienneFrance

Personalised recommendations