GIS-based analysis of the Stream Length-Gradient Index for evaluating effects of active tectonics: a case study of Enfidha (North-East of Tunisia)

  • Abdelkader Moussi
  • Noamen Rebaï
  • Ali Chaieb
  • Abdeljaouad Saâdi
Original Paper
  • 191 Downloads

Abstract

Our study aims at calculating morphometric indices through the recourse to the Digital Elevation Model (DEM) and its attributes (hydrographic networks, watersheds, and reliefs). This quantitative measurement is used for the morphotectonical analysis of the Enfidha area (North-East of Tunisia) in the GIS environment and statistical platform. The Enfidha area is selected to analyze and identify neotectonic morphostructures on basis of the morphological evolution of the landscape. The coastal Enfidha plain is part of the Tunisian Sahel that is marked by its instability and frequent earthquakes that prove the presence of the recent deformation and active subsurface faults. This morphometric modeling in the geological investigation area reflects the morphotectonic spatial evolution in the Quaternary basins areas. Stream length (SL) proposed by Hack (1973) and denominated by Etchebehere et al. (2004) Revista do Instituto de Geociências USP, Série Científica, São Paulo 4(2):43–56 as the RDE index (Relation Declivity Extension) was used for application in the studies of neotectonic approach. RDE index is one of the morphotectonical indices that designates the tectonics anomalies in rivers. The variability in (RDE) values can indicate both a lithology resistance towards erosion and major active subsurface faults or low slope. Our geostatistical method is required to obtain RDE index maps based on lithological filtrations and value interpolations which are calculated in a drainage line network. This method calculates, measures, and validates spatial distribution of hack RDE index through a high statistical accuracy in a quantitative anomalies study. The RDE anomaly maps of the study area mirror the concurrence between anomaly zones, major active subsurface E-W faults, and local geological discontinuities related to neotectonical activities that affect the hydrographic network. This study proves that the RDE index can be especially used to detect the influence of active large-scale faults on the landscape evolution.

Keywords

DEM Hack SL index Morphotectonic analysis GIS environment Enfidha area 

Notes

Acknowledgements

The authors are thankful and appreciate the collaboration with the Professor Mohamed Moncef Turki for all application comments and discussion for geological interpretations.

References

  1. Abbas H (2008) A test of the validity of morphometric analysis in determining tectonic activity from aster derived DEMS in the Jordan-dead sea transform zone. ProQuest Dissertations And Theses; Thesis (Ph.D.) --University of Arkansas, 2008. 69–05, Section: B, 2874; 220 pGoogle Scholar
  2. Amari A, Bédir M (1989) Les bassins quaternaires du Sahel central de la Tunisie, genèse et évolution des sebkhas en contexte décrochant compressif et distensif. Rev Géodyn 4:49–65Google Scholar
  3. Azañón JM, Pérez-Peña JV, Giaconia F, Booth-Rea G, Martínez-Martínez JM, Rodríguez-Peces MJ (2012) Active tectonics in the central and eastern Betic Cordillera through morphotectonic analysis: the case of Sierra Nevada and Sierra Alhamilla. J Iber Geol 38:225–238CrossRefGoogle Scholar
  4. Baker VR (1986) Introduction: regional landforms analysis. In: Short NM Sr, Blair RW Jr (eds) Geomorphology from space: a global overview of regional landforms. National Aeronautics and Space Administration (NASA), Washington, D.C., pp 1–26Google Scholar
  5. Bédir M (1988) Géodynamique des bassins sédimentaires du Sahel de Mahdia (Tunisie orientale) de l’Aptien à l’actuel. Sismostratigraphie, Sismotectonique et Structurale. Répercutions pétrolières, hydrologiques et sismiques. Thèse de Doctorat 3ème cycle, Faculté des Sciences de Tunis, Université de Tunis El Manar II, 217pGoogle Scholar
  6. Bedir M, Zargouni F (1986) Structuration post-miocène des bancs sédimentaires du Sahel de Mahdia : analyse géométrique et cinématique des données de subsurface. Rev. Sc. de la Terre, vol. 4, Ed. Centre des Sc. de la Terre. I.N.R.S.T. p 55–69Google Scholar
  7. Bédir M (1995) Mécanismes géodynamiques des bassins associés au couloir de coulissements de la marge atlasique de la Tunisie: seismo-stratigraphie, seismotectonique et implications pétrolières. Thèse de Doctorat ès-Sciences, Faculté des Sciences de Tunis, Université de Tunis El Manar II, 416pGoogle Scholar
  8. Ben Ayed N (1986) Evolution tectonique de l’avant pays de la chaîne alpine de la Tunisie du début du Mésozoïque à l’Actuel. Thèse Doctorat ès-Sciences, Université Paris VI, 232pGoogle Scholar
  9. Ben Chelbi M, Kamel S, Harrab S, Rebaï N, Melki F, Meghraoui M, Zargouni F (2013) Tectonosedimentary evidence in the Tunisian Atlas, Bou Arada Trough: insights for the geodynamic evolution and Africa–Eurasia plate convergence. J Geol Soc London 170:435–449CrossRefGoogle Scholar
  10. Biju Duval B, Dercourt J and Le Pichon X (1977) From the Tethys ocean to the Mediterranean Sea: a plate tectonic model of the evolution of the western Alpin system. Structural history of the western Mediterranean basins, pp 143–164Google Scholar
  11. Boukadi N (1994) Structuration de l’Atlas de Tunisie : signification géométrique et cinématique des nœuds et des zones d‘interférences structurales au contact des grands couloirs tectoniques. Thèse de Doctorat 3ème cycle, Faculté des Sciences de Tunis, Université de Tunis El Manar II, 249pGoogle Scholar
  12. Boukadi N and Bedir M (1996) Déformation discontinue rotation et plissement concentrique. Exemple de l’Atlas Tunisien et du bloc pélagien. Revu Tunisienne de l’énergie N° 22. pp 33–38Google Scholar
  13. Bratsev AP (1964) On the question of river system density. Meteorol Gidrol 7Google Scholar
  14. Bull WB (1984) Tectonic geomorphology. J Geol Educ 32:310–324CrossRefGoogle Scholar
  15. Burbank DW, Anderson RS (2001) Tectonic geomorphology. Blackwell Science, Inc., MaldenGoogle Scholar
  16. Burnett AW, Schumm SA (1983) Alluvial river response toneotectonic de formation in Louisiana and Mississippi. Science 222:49–50CrossRefGoogle Scholar
  17. Burollet PF (1956) Signification géologique de l’axe Nord-Sud. Actes du 1er Congrès Nat. Sci. Terre. Tunisie, pp 315–319Google Scholar
  18. Burollet PF (1981) Signification géologique de l’Axe Nord-Sud. 1er Cong. Nat. Sc. Terre, Tunis, p 31Google Scholar
  19. Campa Uranga MF, García Díaz JL, García JB, Torreblanca Castro TJ, Aguilera Martínez MA, Martínez AV (1998) Carta Geológico-minera Chilpancingo E14-8. Servicio Geológico Mexicano and Universidad Autónoma de Guerrero, Guerrero, Oaxaca y Puebla carta E14e8, scale1: 250,000 (in Spanish)Google Scholar
  20. Carozza MJ, Delcaillau MB (2015) Réponse des bassins versants à l’activité tectonique : l’exemple de la terminaison orientale de la chaîne pyrénéenne. Approche morphotectonique / Drainage basins response to active tectonics: example from Eastern Pyrenees. Morphotectonic approach. Géomorphologie Relief Processus Environ 6:45–60CrossRefGoogle Scholar
  21. Carranza ER, Aguilera Martínez MA, Martínez AV (1999) Carta Geológico-minera Zihuatanejo E14e7e10, Guerrero. Servicio Geológico Mexicano carta E14e7e10, scale1: 250,000Google Scholar
  22. Charleux-demargne J (2001) Qualité des Modèles Numériques de Terrain pour l’Hydrologie Application à la Caractérisation du Régime de Crues des Bassins Versants. Thèse préparée au sein de l’Unité Mixte de Recherche « Structures et Systèmes Spatiaux ». Cemagref-Engref, MontpellierGoogle Scholar
  23. Chihi and Philip H (1999) Le bloc atlaso-pélagien : place et évolution géodynamique dans le contexte subduction-collision de la méditerranée centrale (Afrique du nord-Sicile) du Miocène au Quaternaire. Note du Service Géologique de Tunisie n°65, pp 49–61Google Scholar
  24. Chihi L (1995) Les fossés néogènes à quaternaires de la Tunisie et de la mer pélagienne: Etude structurale et leur signification dans le cadre géodynamique de la Méditerranée centrale. Thèse Doctorat ès Science Géologique, Université de Tunis El Manar, TunisieGoogle Scholar
  25. Collins DBG and Bras RL (2010) Climatic and ecological controls of equilibrium drainage density, relief, and channel concavity in dry lands. Water Resour Res 46Google Scholar
  26. Cressie NAC (1990) The origins of kriging. Math Geol 22:239–252CrossRefGoogle Scholar
  27. Cruz López DE, Sánchez Andraca HR, Bustos OL (2000) Carta Geológico-minera Acapulco E14e11. Servicio Geológico Mexicano, Guerrero y Oaxaca carta E14e11, scale1: 250,000 (in Spanish)Google Scholar
  28. Davis WM (1899) The geographical cycle. Geogr J 15(5):481–504CrossRefGoogle Scholar
  29. Dercourt J et al (1986) Geological Evolution of the Tethys Belt from the Atlantic to the Pamirs since the Lias. Tectonophysics 123:241–315CrossRefGoogle Scholar
  30. Delteil J, Zouari HM, Chikhaoui, Creuzot G, Ouali J, Turki MM, Yaïch C, Zargouni F (1991) Relation entre ouvertures téthysienne et mésogéenne en Tunisie. Bull Soc Géol France 162:1173–1181Google Scholar
  31. Dlala M (1995) Evolution géodynamique et tectonique superposées en Tunisie : implications sur la tectonique récente et la sismicité. Thèse Es Sciences Géologique, Univ. Tunis II, Fac. Sc. Tunis, 389pGoogle Scholar
  32. Etchebehere MLC, Saad AR, Perinotto JAJ, Fulfaro VJ (2004) Aplicação do Índice “Relação Declividade-Extensão - RDE” na Bacia do Rio do Peixe (SP) para detecção de deformações neotectônicas. Revista do Instituto de Geociências USP, Série Científica, São Paulo 4(2):43–56Google Scholar
  33. Etchebehere MLC, Saad AR, Santoni G, Casado FC, Fulfaro VJ (2006) Detecção de prováveis deformações neotectônicas no vale do rio do Peixe, Região Ocidental Paulista, mediante aplicação de índices RDE (Relação Declividade-Extensão) em segmentos de drenagem. Revista UNESP Geociências 25(3):271–287Google Scholar
  34. Fidolini F, Pazzi V, Frodella W, Morelli S, Fanti R (2015) Geomorphological Characterization, Monitoring and Modeling of the Monte Rotolon Complex Landslide (Recoaro Terme, Italy). In: Lollino G et al (eds) Engineering Geology for Society and Territory, vol 2. Springer, ChamGoogle Scholar
  35. Font M, Amorese D, Lagarde JL (2010) DEM and GIS analysis of the stream gradient index to evaluate effects of tectonics: the Normandy intraplate area (NW France). Geomorphology 119(3):172–180CrossRefGoogle Scholar
  36. Gabtni H (2005) Apport de la gravimétrie à l’étude des structures profondes du Sahel de Tunisie (cas de la région de Kairouan–Sousse–Monastir). Compt Rendus Geosci 337:1409–1414CrossRefGoogle Scholar
  37. Gaidzik K, Teresa Ramírez-Herrera M (2017) Geomorphic indices and relative tectonic uplift in the Guerrero sector of the Mexican forearc. Geosci Front 8:885–902CrossRefGoogle Scholar
  38. Ghribi R, Bouaziz S (2010) Neotectonic evolution of the Eastern Tunisian platform from paleostress reconstruction. J H M R Environ Res 1(1):14–25Google Scholar
  39. Gilbert GK (1877) Geology of the Henry Mountains (Utah). U.S. Geographical and Geological Survey of the Rocky Mountains Region, U.S. Government Printing Office, Washington D.C. 170 ppGoogle Scholar
  40. Hack JT (1973) Stream-profile analysis and stream-gradient index. J Res U S Geol Surv 1(4):421–429Google Scholar
  41. Hadj Sassi M, Zouari H, Jallouli C (2006) Contribution de la gravimétrie et de la sismique réflexion pour une nouvelle interprétation géodynamique des fossés d’effondrement en Tunisie : exemple du fossé de Grombalia. Compt Rendus Geosci 338:751–756CrossRefGoogle Scholar
  42. Haller P (1983) Structure profonde du Sahel tunisien. Interprétation géodynamique. Thèse de Doctorat de 3ème cycle. Université de Franche-Comté, 162 pGoogle Scholar
  43. Hayden RS (1986) Geomorphological Mapping. In Geomorphology from Space: A global overview of regional landforms. In: Short NM Sr, Blair RW Jr (eds) . National Aeronautics and Space Administration (NASA), Washington, DC, pp 637–656Google Scholar
  44. Hezzi I (2014) Caractérisation géophysique de la plateforme de Sahel, Tunisie nord orientale et ses conséquences géodynamiques. Thèse de Doctorat 3ème cycle, Faculté des Sciences de Tunis, Université de Tunis El Manar II, 315pGoogle Scholar
  45. Horton RE (1932) Drainage-basin characteristics. Trans Am Geophys Union 13(1):350–361CrossRefGoogle Scholar
  46. Horton RE (1945) Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geol Soc Am Bull 56:275–370CrossRefGoogle Scholar
  47. Isaac EH, Srivastava RM (1989) An introduction to applied geostatistics. Oxford University Press, New YorkGoogle Scholar
  48. Jauzein A (1967) Contribution à l’étude géologique des confins de la dorsale Tunisienne (Tunisie Septentrionale). Annales des Mines et de la Géologie No22. 475pGoogle Scholar
  49. Kamoun Y (1981) Néotectonique dans la région de Monastir-Mahdia (Tunisie orientale). Thèse de Doctorat 3éme cycle, Université Paris Sud, 175 pGoogle Scholar
  50. Kamoun Y (2001) Un témoin de l’importante lunette d’El Kelbia : Draa Lakhmès-Ech Chraïf (Tunisie orientale). Notes du Service Géologique de Tunisie 67:107–119Google Scholar
  51. Keller EA, Pinter N (1996) Active tectonics: earthquakes, uplift and landscape. Prentice Hall, New Jersey, p 338Google Scholar
  52. Keller EA, Pinter N (2002) Active tectonics: earthquakes, uplift, and landscape. Prentice Hall, New Jersey 362pGoogle Scholar
  53. Khavari R (2017) Examination of tectonic activity based on knickpoint distribution and movement potential of faults in Khuzestan Province, South West Zagros, Iran. J Mar Sci Res Dev 7(1)Google Scholar
  54. Khomsi S, Bédir M, Ben Jemia MG, Zouari H (2004) Mise en évidence d’un nouveau front de chevauchement dans l’Atlas tunisien oriental de Tunisie par sismique réflexion. Contexte structural régional et rôle du Trias salifère. Compt Rendus Geosci 336:1401–1408CrossRefGoogle Scholar
  55. Khomsi S, Bédir M, Soussi M, Ben Jemia MG, Ben Ismail-Lattrache K (2006) Mise en évidence en subsurface d'événements compressifs Eocène moyen-supérieur en Tunisie orientale (Sahel): Généralité de la phase atlasique en Afrique du Nord. Compt Rendus Geosci 338(1–2):41–49CrossRefGoogle Scholar
  56. Kirby E, Whipple KX (2012) Expression of active tectonics in erosional landscapes. J Struct Geol 44:54e75CrossRefGoogle Scholar
  57. Marple RT, Talwani P (1993) Evidence of possible tectonic up warding along the South Carolina coastal plain from an examination of river morphology and elevation data. Geology 21:651–654CrossRefGoogle Scholar
  58. Martinez M, Hayakawa E, Stevaux JC, Profeta JD (2011) SL index as indicator of anomalies in the longitudinal profile of the Pirapó River. Rev Geociências 30:63–76Google Scholar
  59. McKeown FA, Jones-Cecil M, Askew BL, McGrath MB (1988) Analysis of stream-profile data and inferred tectonic activity, Easter Ozark Mountains region. U.S. Geol. Survey Bull., (1807), Denver, p 39Google Scholar
  60. Merrits D, Hesterberg T (1994) Stream networks and long-term surface uplift in the New Madrid seismic zone. Sciencem 265,1081–1.084Google Scholar
  61. Missura R (2005) Análise morfoestratigráfica da Bacia do Ribeirão dos Poncianos/MG. Rio Claro, 2005.136 p. Tese (Mestrado) – Universidade Estadual Paulista. UnpublishedGoogle Scholar
  62. Monteiro KA, Missura R, Correa ACB (2010) Application of the hack index—or stream length-gradient index (SL index )—to the Tracunhaém river watershed ,Pernambuco, Brazil. Geociências 29:533–539Google Scholar
  63. Mrabet A and Boujarra A (1999) Archéologie et géomorphologie: contribution à l'étude de l'évolution des paysages du sahel nord depuis l'antiquité. Actes du Colloque: Du Byzacium au Sahel: Itinéraire d’une région tunisienne; Université du Centre, Faculté des Lettres et Sciences Humaines de Sousse; L’Or du Temps, 1999, pp 83-97. Lecture Notes in Earth System SciencesGoogle Scholar
  64. Pedro Galve J, Piacentini D, Troiani F, Della Seta M (2014) Stream length-gradient index mapping as a tool for landslides identificationGoogle Scholar
  65. Pérez-Peña JV, Azañón JM, Azor A, Delgado J, González-Lodeiro F (2009) Spatial analysis of stream power using GIS: SLk anomaly maps. Earth Surf Process Landf 34:16–25CrossRefGoogle Scholar
  66. Queiroz GL, Salamuni E, Nascimento ER (2015) Knickpoint finder: a software tool that improves neotectonic analysis. Comput Geosci 76:80–87.  https://doi.org/10.1016/j.cageo.2014.11.004 CrossRefGoogle Scholar
  67. Rebai N, Slamas T, Turki MM (2007) Évaluation de différentes méthodes d’interpolation spatiale pour la production d’un MNT à partir des données topographiques dans un SIG. Revue XYZGoogle Scholar
  68. Rodriguez SK, Suguio K (1992) Gradientes hidráulicos das drenagens de 2ª ordem: uma contribuição para os estudos de neotectônicada “Volta Grande” do rio Xingu, Altamira-PA.In: Congresso Brasileiro de Geologia, 37, 1992, SãoPaulo. Resumos Expandidos. SãoPaulo: Sociedade Brasileira de Geologia. pp 598–600Google Scholar
  69. Sarp G, Duzgun S (2015) Morphometric evaluation of the Afs ß in-Elbistan lignite basin using kernel density estimation and Getis-Ord’ s statistics of DEM derived indices, SE Turkey. J Asian Earth Sci.  https://doi.org/10.1016/j.jseaes.2015.07.022,
  70. Schumm SA, Spitz WJ (1996) Geological influences on the Lower Mississippi River and its alluvial valley. Eng Geol 45:245–261CrossRefGoogle Scholar
  71. Siddiqui S, Castaldini D, Soldati M (2017) DEM-based drainage network analysis using steepness and Hack SL indices to identify areas of differential uplift in Emilia–Romagna Apennines, northern Italy. Arab J Geosci 10:262CrossRefGoogle Scholar
  72. Seeber L, Gornitz V (1983) River profiles along the Himalayan arc as indicators of active tectonics. Tectonophysics 92:335–367CrossRefGoogle Scholar
  73. Strahler AN (1957) Quantitative analysis of watershed geomorphology. Trans Am Geophys Union 38(6):8CrossRefGoogle Scholar
  74. Summerfield MA (1991) Global geomorphology: an introduction to the study of landforms. Prentice Hall, Pearson Education Ltd, HarlowGoogle Scholar
  75. Tlig S, Erraioui L, Ben Aissa L, Aluoani R, Tagorti MA (1991) Tectogenèses alpine et atlasique : deux événements distincts dans l’histoire géologique de la Tunisie. Corrélation avec les événements clés en Méditerranée. Compt Rendus Académie Sci Paris 312(Série II):295–301Google Scholar
  76. Toudeshki VH, Arian M (2011) Morphotectonic analysis in the Ghezel Ozan river basin, NW Iran. J Geogr Geol 3(1):258–265Google Scholar
  77. Troiani F, Della Seta M (2008) The use of the Stream Length-Gradient index in morphotectonic analysis of small catchments: a case study from Central Italy. Geomorphology 102:159–168CrossRefGoogle Scholar
  78. Troiani F, Della Seta M (2011) Geomorphological response of fluvial and coastal terraces to Quaternary tectonics and climate as revealed by geostatistical topographic analysis. Earth Surf Process Landf 36:1193–1208CrossRefGoogle Scholar
  79. Troiani F, Galve JP, Della Seta M, Piacentini D, Savelli D (2012) Correlation between SL index anomalies and slope failures in active mountain belts. Proceedings of the 16° Joint Geomorphological Meeting, Rome, ItalyGoogle Scholar
  80. Troiani F, Galve JP, Piacentini D, Della Seta M, Guerrero J (2014) Spatial analysis of stream length-gradient (SL) index for detecting hillslope processes: a case of the Gàllego River headwaters (Central Pyrenees, Spain). Geomorphology 214(January 2016):183–197CrossRefGoogle Scholar
  81. Volkov NG, Sokolovsky IL, Subbotin AI (1967) Effect of recent crustal movements on the shape of longitudinal profiles and water levels in rivers. In: Proceedings of the International symposiumon river mechanics, Bern (Swiss). Bern: International Union of Geodesy and Geophysics, pp 105–116Google Scholar
  82. Wells SG, Bullard TF, Menges TM, Drake PG, Karas PA, Kelson KI, Ritter JB, Wesling JR (1988) Regional variations in tectonic geomorphology along segment convergent plate boundary pacific coast of Costa Rica. Geomorphology 1:239–265CrossRefGoogle Scholar
  83. Wobus C, Whipple KX, Kirby E, Snyder N, Johnson J, Spyropolou K, Crosby BT, Sheehan D (2006) Tectonics from topography: procedures, promise, and pitfalls. Geol Soc Am Spec Pap 398:55e74Google Scholar
  84. Zargouni F, and Abbes Ch (2010) La zonation structurale de la Tunisie. Centre des Sciences de la Terre, INRST, Borj Cedria, B.P. 95, Hamam-Lif, TunisieGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  1. 1.Faculté des Sciences de Tunis, Laboratoire Ressources Minérales et EnvironnementUTMTunisTunisia
  2. 2.École Nationale d’Ingénieur de Tunis, Département de Génie CivilUTMTunisTunisia
  3. 3.National School of Engineers of SfaxUniversity of SfaxSfaxTunisia

Personalised recommendations