Advertisement

Changing roles controlling alternating marine and aeolian deposition and formation of Quaternary sequences in Hergla coastal escarpment (north-eastern Tunisia)

  • Hajer MejriEmail author
  • Elhoucine Essefi
  • Karima Hammami
  • Mohamed Faouzi Zagrarni
Original Paper
  • 610 Downloads

Abstract

This work is meant to set a new stratigraphic framework of the Quaternary Hergla Sea Cliff deposits in eastern Tunisia including vital precisions concerning depositional environments and climatic conditions. Infrared stimulated luminescence (IRSL) data previously obtained at the Hergla region show that the Khniss unit is Tyrrhenian in age (MIS 5.5), while the Rejiche unit dates to the MIS 5.3/5.1 undifferentiated by the IRSL for the marine deposits and attributed to the MIS 4 for the dunes continental deposits. The sedimentological studies showed that the whole of the marine units of the Upper Pleistocene of Hergla were deposited in a shallow marine environment and also highlighted at least two major transgressive cycles interrupted by drops of the sea level leading to emergence. The first cycle corresponds to the Khniss unit deposit. The second cycle corresponds to the transgression of the Rejiche unit. The end of the MIS 5.5 is marked by a lagoonal sedimentation with a regressive tendency followed by an emergence period materialized by the presence of a paleosol. During the MIS 5.3/5.1, the marine deposits of the Rejiche unit correspond to infratidal carbonate sediments subjected to storms currents. They are characterized by the reworking of lithoclasts, due to the action of the storm currents. Eventually, the study of cements in the continental deposits of the Rejiche unit indicates a late evolution in a continental vadose environment, subjected to the action of meteoric waters. In terms of climatic conditions, the MIS 5.5 was hotter and wetter than the subsequent MIS 5.3/5.1.

Keywords

Lithostratigraphy Sedimentology Eustatic fluctuations Storms Upper Pleistocene deposits Hergla escarpment Eastern Tunisia 

Supplementary material

12517_2017_3340_Fig12_ESM.gif (1 kb)
A1

Grain-size characteristics of the Upper Pleistocene units of Hergla escarpment. Ms.: medium sand; CS: coarse sand; VMS: very moderately sorted; WS: well sorted; MWS: moderately well sorted; MS: moderately sorted; Md: Mode; Mz: Mean; σ: Sorting index; K: Kurtosis; Sk: Skewness (GIF 1 kb)

12517_2017_3340_MOESM1_ESM.tif (85 kb)
High Resolution Image (TIFF 84 kb)
12517_2017_3340_Fig13_ESM.gif (161 kb)
A2

Superposition of the grain-size distribution curves of the marine H-M2 and H-D3 facies (GIF 160 kb)

12517_2017_3340_MOESM2_ESM.tif (189 mb)
High Resolution Image (TIFF 193542 kb)
12517_2017_3340_Fig14_ESM.gif (405 kb)
A3

Grain-size distribution curve representing the lagoonal H-LL1 facies (GIF 404 kb)

12517_2017_3340_MOESM3_ESM.tif (518.4 mb)
High Resolution Image (TIFF 530871 kb)
12517_2017_3340_Fig15_ESM.gif (387 kb)
A4

Grain-size distribution curve representing the dune H-D4 facies (GIF 386 kb)

12517_2017_3340_MOESM4_ESM.tif (544 mb)
High Resolution Image (TIFF 557011 kb)

References

  1. Abbes C (2004) Structuration et évolutions tectono-sédimentaires mésozoïques et cénozoïques associées aux accidents reghmatiques à la jonction des marges téthysienne et nord-africaine (Chaîne nord-sud, Tunisie centrale), Thèse ès. Sciences. Faculté des Sciences de Tunis, Université de Tunis El Manar IIGoogle Scholar
  2. Aitken MJ (1985) Thermoluminescence dating. Academic Press, New YorkGoogle Scholar
  3. Aitken MJ (1998) An introduction to optical dating. Oxford Science Publications, The dating of Quaternary sediments by the use of photon-stimulated luminescenceGoogle Scholar
  4. Andreucci S, Clemmensen LB, Murray AS, Pascucci V (2010) Middle to Late Pleistocene coastal deposits of Alghero, northwest Sardinia (Italy): chronology and evolution. Quat Int 222:3–16CrossRefGoogle Scholar
  5. Balescu S, Lamothe M, Lautridou JP (1997) Luminescence evidence for two Middle Pleistocene interglacial events at Tourville, northwestern France. Boreas 26:61–72CrossRefGoogle Scholar
  6. Balescu S, Huot S, Mejri H, Barre M, Forget Brisson L, Lamothe M, Oueslati A (2015a) Luminescence dating of Middle Pleistocene (MIS 7) marine shoreline deposits along the eastern coast of Tunisia: a comparison of K-feldspar and Na-feldspar IRSL ages. Quat Geochronol:1–6Google Scholar
  7. Balescu S, Mejri H, Oueslati A, Lamothe M (2015b) Datation IRSL des dépôts lagunaires pléistocènes de la côte orientale de la Tunisie: pour une meilleure reonstitution des paléomilieux et paléopaysages côtiers. Méditerranée 125Google Scholar
  8. Bardají T, Goy JL, Zazo C, Hillaire-Marcel C, Dabrio CJ, Cabero A, Ghaleb B, Silva PG, Lario J (2009) Sea level and climate changes during OIS 5e in the western Mediterranean. Geomorphology 104:22–37CrossRefGoogle Scholar
  9. Ben Ayed N, Oueslati A (1988) Déformations tectoniques dans le Quaternaire récent de Ras Engela (région de Bizerte Tunisie septentrionale). Geol. Mediterr. France 23:17–21Google Scholar
  10. Blanc AC (1937) Le variazioni delle line di riva del Mar Nero e del Mediterraneo durante il Quaternario. Bolletino Società Geologica Italiana 56:346–365Google Scholar
  11. Bédir M (1988) Géodynamique des bassins sédimentaires du Sahel de Mahdia (Tunisie orientale) de l'Aptien à l'actuel. Sismostratigraphie, Sismotectonique et Structurale. Répercussions pétrolières, hydrologiques et sismiques, Thèse de Doctorat 3ème cycle. Faculté des Sciences de Tunis, Université de Tunis El Manar IIGoogle Scholar
  12. Ben Ayed N (1986) Evolution tectonique de l’avant pays de la chaîne alpine de Tunisie du début du Mésozoïque à l’Actuel, Thèse de Doctorat d’Etat. Université Paris Sud, FranceGoogle Scholar
  13. Brewer R, Sleeman JR (2006) Glaebules: their definition, classification and interpretation. Eur J Soil Sci 15(1):66–78CrossRefGoogle Scholar
  14. Bethoux JP, Pierre C (1999) Mediterranean functioning and sapropel formation: respective influences of climate and hydrological changes in the Atlantic and the Mediterranean. Mar Geol 153:29–39CrossRefGoogle Scholar
  15. Causse C, Ghaleb B, Chkir N, Zouari K, Ben Ouezdou H, Mamou A (2003) Humidity changes in southern Tunisia during the Late Pleistocene inferred from U–Th dating of mollusc shells. Appl Geochem 18:1691–1703CrossRefGoogle Scholar
  16. Gallala W, Gaied ME, Essefi E, Montacer M (2010) Pleistocene calcretes from eastern Tunisia: the stratigraphy, the microstructure and the environmental significance. J Afr Earth Sci 58:445–456CrossRefGoogle Scholar
  17. Geyh MA, Thiedig F (2008) The Middle Pleistocene Al Mahrúqah Formation in the Murzuq Basin, northern Sahara, Libya evidence for orbitally-forced humid episodes during the last 500,000 years. Palaeogeogr Palaeoclimatol Palaeoecol 257:1–21CrossRefGoogle Scholar
  18. Hearty PJ, Bongfilio L, Violanti D, Sazo BJ (1986) Age of late Quaternary marine deposits of Southern Italy determined by aminostratigraphy, faunal correlation and uranium-series dating. Riv Ital Paleontol Stratigr 11:63–87Google Scholar
  19. Herm D, Paskoff R, Sanlaville P (1980) La stratigraphie des falaises d’Hergla (Sahel de Sousse, Tunisie) et son importance pour la compréhension du Quaternaire marin récent de la Tunisie. C. R. Somm. Soc. Geol. Fr 1:25–28Google Scholar
  20. Jedoui Y, Davaud E, Strasser A (1987) Sédimentation et diagenèse du cordon littoral Tyrrhénien de la Sebkha el Menzel (Hergla, Tunisie). Notes du Serv Géol Tunisie 55:46–74Google Scholar
  21. Kallel N, Duplessy JC, Labeyrie L, Fontugne M, Paterne M, Montacer M (2000) Mediterranean pluvial periods and sapropel formation during the last 200,000 years. Palaeogeogr Palaeoclimatol Palaeoecol 157:45–58CrossRefGoogle Scholar
  22. Kamoun Y, Sorel D, Ben Ayed N (1980) Un grand accident subméridien d’âge post-tyrrhénien en Tunisie orientale : le décrochement sénestre de Skanès (Monastir), Hammamet. C. R. Acad. Sc. Paris t.290 Série D pp 647–384Google Scholar
  23. Mahamat H (2017) Caractères sédimentaires, stratigraphie de haute résolution (cyclo-stratigraphie) et diagenèse du Pléistocène supérieur de la falaise de Hergla (Tunisie centrale), Mastère de recherche. Faculté des Sciences de BizerteGoogle Scholar
  24. Mahmoudi M (1986) Stratigraphie, sédimentologie et diagenèse des dépôts tyrrhéniens du Sahel tunisien, Thèse de 3ème cycle. Université de Paris Sud OrsayGoogle Scholar
  25. Mahmoudi M (1988) Nouvelle proposition de subdivisions stratigraphiques des dépôts attribués au Tyrrhénien en Tunisie (région de Monastir). Bulletin de la Société Géologique de France 8:431–435Google Scholar
  26. Martrat B, Grimait JO, Lopez-Martinez C, Cacho I, Sierro FJ, Flores JA, Zahn R, Canals M, Curtis JH, Hodell DA (2004) Abrupt temperature changes in the western Mediterranean over the past 250,000 years. Science 306:1762–1765CrossRefGoogle Scholar
  27. Mauz B, Elmejdoub N, Nathan R, Jedoui Y (2009) Last Interglacial coastal environments in the Mediterranean-Saharan transition zone. Palaeogeography, Palaeoclimatlogy, Palaeoecology 279:137–149CrossRefGoogle Scholar
  28. Mejdahl V (1988) Long-term stability of the TL signal in alkali feldspars. Quat Sci Rev 7:357–360CrossRefGoogle Scholar
  29. Mejdahl V (1989) How far back: life times estimated from studies of feldspars of infinite ages. In M.J. Aitken (ed.), Synopses from a workshop on “long and short range limits in luminescence dating”. Occasional Publication 9, The Research Laboratory for Archaeology and the History of Art. Oxford University, Oxford, pp 53-58Google Scholar
  30. Mejri H (2012) Les paléorivages marins pléistocènes du littoral Est tunisien: chronologie IRSL, paléoenvironnements et régime tectonique. Thèse de doctorat. Université Lille 1 et Université de SfaxGoogle Scholar
  31. Mejri H (2013) Cadre géologique de la sebkha-lagune de Halk el Minjel. In : Mulazzani S. (éd.) L’habitat épipaléolithique de SHM-1 (Hergla, Tunisie) au VIIe-Vie millénaire cal BC: environnement, culture et économie, Reports in African Archeology collection. Journal of African Archeology, Edition Africa Magna Verlag, pp 21–27Google Scholar
  32. Miller G H, Paskoff R, Stearns CE (1986) Amino acid geochronology of Pleistocene littoral deposits in Tunisia. Zeitschrift für Geomorphologie N.F, Supplementbände 62: 197–207Google Scholar
  33. Nichols G (1999) Sedimentology and stratigraphy. A John Wiley & Sons, Ltd. Publication, UKGoogle Scholar
  34. Oueslati A, Paskoff R, Sanlaville P (1982) Le Tyrrhénien de Tunisie: essai de synthèse. Bulletin de la Société Géologique de France, Vol 2:173–178CrossRefGoogle Scholar
  35. Oueslati A (1994) Les côtes de la Tunisie. Recherches sur leur évolution au Quaternaire. Publications de la Faculté des Sciences Humaines et Sociales de Tunis. Série 2: Géographie 35, Université de TunisGoogle Scholar
  36. Paskoff R, Sanlaville P (1976) Sur le Quaternaire marin de la région de Mahdia, Sahel de Sousse (Tunisie). Comptes-Rendus de l’Académie des Sciences, Paris 283:1715–1718Google Scholar
  37. Paskoff R, Sanlaville P (1980) Le Tyrrhénien de la Tunisie: essai de stratigraphie. Comptes-Rendus de l’Académie des Sciences 290:336–339Google Scholar
  38. Paskoff R, Sanlaville P (1983) Les côtes de la Tunisie. Variations du niveau marin depuis le Tyrrhénien. Coll. Maison de l’Orient, LyonGoogle Scholar
  39. Purser BH (1980) Sédimentation et diagenèse des carbonates néritiques récents. Editions Technip Paris et Institut Français du PétroleGoogle Scholar
  40. Rabhi M, Maamri R, Taamallah N (2002) Notice explicative de la carte géologique de la Tunisie à 1/50.000 Sidi Bou Ali et Halk el Menzel, Feuilles n° 49 et 50Google Scholar
  41. Reineck HE, Singh I (1973) Depositional sedimentary environments. Springer–Verlag Berlin Heidelberg, New YorkCrossRefGoogle Scholar
  42. Selly R (2000) Applied sedimentology. Academic Press, San Diego, CAGoogle Scholar
  43. Szabo BJ, Jr H, Maxwell TA (1995) Ages of Quaternary pluvial episodes determined by uranium-series and radiocarbon dating of lacustrine deposits of Eastern Sahara. Palaeogeogr Palaeoclimat Palaeoecol 113:227–242CrossRefGoogle Scholar
  44. Turki MM (1985) Polycinématique et contrôle sédimentaire associé sur la cicatrice Zaghouan–Nebhana, Thèse de Doctorat d’Etat. Faculté des sciences de Tunis, Université de Tunis El Manar II, TunisGoogle Scholar
  45. Waelbroeck C, Labeyrie L, Michel E, Duplessy JC, McManus JF, Lambeck K, Balbon E, Labracherie M (2002) Sea-level and deep water tempretaure changes derived from foraminifera isotope records. Quat Sci Rev 21:296–305Google Scholar
  46. Zazo C, Goy JL, Dabrio CJ, Bardaji T, Hillaire-Marcel C, Ghaleb B, Gonzales-Delgado JA, Soler V (2003) Pleistocene raised marine terraces of the Spanish Mediterranean and Atlantic coasts: records of coastal uplift, sea-level highstands and climate changes. Mar Geol 194:103–133CrossRefGoogle Scholar
  47. Zhongwei Y, Petit-Maire N (1994) The last 140 ka in the Afro-Asian arid/semi-arid transitional zone. Palaeogeogr Palaeoclimatol Palaeoecol 110:217–233CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2017

Authors and Affiliations

  • Hajer Mejri
    • 1
    Email author
  • Elhoucine Essefi
    • 2
  • Karima Hammami
    • 3
  • Mohamed Faouzi Zagrarni
    • 4
  1. 1.National Engineering School of GafsaUniversity of GafsaGafsaTunisia
  2. 2.Higher Institute of Applied Sciences and Technology of GabesUniversity of GabesGabesTunisia
  3. 3.Faculty of Sciences of BizerteUniversity of CarthageTunisTunisia
  4. 4.Applied Hydro-Sciences Research Unit (UR13ES81), Higher Institute of Techniques and Water SciencesUniversity of GabesGabesTunisia

Personalised recommendations