Advertisement

Seismic hazard assessment and rheological implications: a case study selected for cities of Saudi Arabia along the eastern coast of Red Sea

  • Faisal RehmanEmail author
  • Abdullah M. Alamri
  • Sherif M. El-Hady
  • Hussein M. Harbi
  • Ali H. Atef
Original Paper

Abstract

A probabilistic approach is used to evaluate the seismic hazard for 12 strategic cities in Saudi Arabia along the eastern coast of Red Sea. The focal depth variations controlled by rheological characteristics are taken into account for hazard calculations, and its creditability is tested through sensitivity analysis for hazard results. This study presents a neo-probabilistic seismic hazard assessment methodology in which the focal depth distribution of earthquakes within seismogenic layer is divided into three depth slices. These depth slices are based upon rheological characteristic of seismogenic layer. The hazard results are obtained using this depth-slice methodology and conventional approach in which uniform distribution of seismicity within seismogenic layer is assumed. The sensitivity analysis culminated in underestimation of hazard values in higher frequencies for uniform distribution of seismicity within seismogenic layer. Foregoing the observations recorded above, it can be concluded that the exploitation of depth-slices biased by the rheology to calculate hazard is relatively preferable in the situations demanding safety measures.

Keywords

Seismic hazard assessment Rheological implications Saudi Arabia 

Notes

Acknowledgements

The authors gratefully appreciate the support by Deanship of Graduate Studies and Department of Geophysics, Faculty of Earth Sciences, King Abdulaziz University. The authors would like to thank Earthquake Monitoring Center, Sultan Qaboos University, Oman who give us the permission to run EZ-FRISK software for academic purposes and scientific cooperation.

Supplementary material

12517_2017_3325_MOESM1_ESM.docx (1.6 mb)
ESM 1 (DOCX 1.57 mb)

References

  1. Abrahamson N (2006) Seismic hazard assessment: problems with current practice and future developments. First European Conference on Earthquake Engineering and Seismology, Geneva, Switzerland, pp 3–8Google Scholar
  2. Abrahamson NA, Bommer JJ (2005) Probability and uncertainty in seismic hazard analysis. Earthquake Spectra 21(2):603–607.  https://doi.org/10.1193/1.1899158 CrossRefGoogle Scholar
  3. Abrahamson N A, Silva W J (1997) Empirical response spectral attenuation relations for shallow crustal earthquakes. Seismol Res Lett 68(1):94–127Google Scholar
  4. Agar R (1987) The Najd fault system revisited; a two-way strike-slip orogen in the Saudi Arabian Shield. J Struct Geol 9(1):41–48.  https://doi.org/10.1016/0191-8141(87)90042-3 CrossRefGoogle Scholar
  5. Al Amri A, Abdelrahman K, Andreae MO, & Al-Dabbagh M (2017) Crustal and upper mantle structures beneath the Arabian Shield and Red Sea. In Lithosphere dynamics and sedimentary basins of the Arabian Plate and surrounding areas (pp. 3-29). Springer International PublishingGoogle Scholar
  6. AlKathery AM (2010) Short-term and long-term seismic hazard assessment, NW Arabian Peninsula. MSc thesis, Geology Department, College of Science, King Saud University, p. 179Google Scholar
  7. Al-Amri A M, Rodgers A J (2013) Improvement of seismicity parameters in the Arabian shield and platform using earthquake location and magnitude calibration. In: Lithosphere dynamics and sedimentary basins: The Arabian plate and analogues. Springer, Berlin, Heidelberg, pp. 281–293Google Scholar
  8. Al-Amri A, Punsalan BT, Khalil A, Uy EA (2003) Seismic hazard assessment of western Saudi Arabia and the Red Sea region. IISEE, Japan, pp 95–112Google Scholar
  9. Al-Arifi NS, Fat-Helbary RE, Khalil AR, Lashin AA (2013) A new evaluation of seismic hazard for the northwestern part of Saudi Arabia. Nat Hazards 69(3):1435–1457CrossRefGoogle Scholar
  10. Albaric J, Déverchère J, Petit C, Perrot J, Le Gall B (2009) Crustal rheology and depth distribution of earthquakes: insights from the central and southern East African Rift System. Tectonophysics 468(1-4):28–41.  https://doi.org/10.1016/j.tecto.2008.05.021 CrossRefGoogle Scholar
  11. Almadani S, Al-Amri A, Fnais M, Abdelrahman K, Ibrahim E, Abdelmoneim E (2015) Seismic hazard assessment for Yanbu metropolitan area, western Saudi Arabia. Arab J Geosci 8(11):9945–9958CrossRefGoogle Scholar
  12. Al-Shanti A (2009) Geology of Arabian Shield of Saudi Arabia. King Abdulaziz Universiyt Press, JeddahGoogle Scholar
  13. Anbazhagan P, Vinod JS, Sitharam TG (2009) Probabilistic seismic hazard analysis for Bangalore. Nat Hazards 48(2):145–166.  https://doi.org/10.1007/s11069-008-9253-3 CrossRefGoogle Scholar
  14. Atkinson GM (2004). An overview of developments in seismic hazard analysis. In 13th World Conference on Earthquake Engineering (pp. 1-6). Vancouver, B.C., Canada August 1-6, 2004Google Scholar
  15. Atkinson GM, Boore DM (1995) Ground-motion relations for eastern North America. Bull Seismol Soc Am 85:17–30Google Scholar
  16. Barani S, Ferretti G, Massa M, Spallarossa D (2007) The waveform similarity approach to identify dependent events in instrumental seismic catalogues. Geophys J Int 168(1):100–108.  https://doi.org/10.1111/j.1365-246X.2006.03207.x CrossRefGoogle Scholar
  17. Bazzurro P, Cornell CA (2004) Nonlinear soil-site effects in probabilistic seismic-hazard analysis. Bull Seismol Soc Am 94(6):2110–2123CrossRefGoogle Scholar
  18. Beauval C, Scotti O (2004) Quantifying sensitivities of PSHA for France to earthquake catalog uncertainties, truncation of ground-motion variability, and magnitude limits. Bull Seismol Soc Am 94(5):1579–1594.  https://doi.org/10.1785/012003246 CrossRefGoogle Scholar
  19. Bodri B (1996) Thermal state, rheology and seismicity in the Pannonian basin, Hungary. J Geodyn 21(4):309–328.  https://doi.org/10.1016/0264-3707(96)00002-6 CrossRefGoogle Scholar
  20. Bommer JJ (2002) Deterministic vs. probabilistic seismic hazard assessment: an exaggerated and obstructive dichotomy. J Earthq Eng 6(sup001):43–73.  https://doi.org/10.1080/13632460209350432 CrossRefGoogle Scholar
  21. Bommer JJ, Scherbaum F (2008) The use and misuse of logic trees in probabilistic seismic hazard analysis. Earthquake Spectra 24(4):997–1009.  https://doi.org/10.1193/1.2977755 CrossRefGoogle Scholar
  22. Boore DM (1983) Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra. Bull Seismol Soc Am 73:1865–1894Google Scholar
  23. Boore DM (2003) Simulation of ground motion using the stochastic method. Pure Appl Geophys 160(3):635–676.  https://doi.org/10.1007/PL00012553 CrossRefGoogle Scholar
  24. Boore DM, Joyner WB, Fumal TE (1997) Equations for estimating horizontal response spectra and peak acceleration from western North American earthquakes: a summary of recent work. Seismol Res Lett 68(1):128–153.  https://doi.org/10.1785/gssrl.68.1.128 CrossRefGoogle Scholar
  25. Bosworth W, Huchon P, McClay K (2005) The Red Sea and Gulf of Aden basins. J Afr Earth Sci 43(1-3):334–378.  https://doi.org/10.1016/j.jafrearsci.2005.07.020 CrossRefGoogle Scholar
  26. Campbell KW, Bozorgnia Y (2003) Updated near-source ground-motion (attenuation) relations for the horizontal and vertical components of peak ground acceleration and acceleration response spectra. Bull Seismol Soc Am 93(1):314–331.  https://doi.org/10.1785/0120020029 CrossRefGoogle Scholar
  27. Campbell KW, Bozorgnia Y (2008) NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s. Earthquake Spectra 24(1):139–171.  https://doi.org/10.1193/1.2857546 CrossRefGoogle Scholar
  28. Cochran JR (1981) The Gulf of Aden: structure and evolution of a young ocean basin and continental margin. J Geophys Res: Solid Earth (1978–2012) 86(B1):263–287.  https://doi.org/10.1029/JB086iB01p00263 CrossRefGoogle Scholar
  29. Cotton F, Scherbaum F, Bommer JJ, Bungum H (2006) Criteria for selecting and adjusting ground-motion models for specific target regions: application to central Europe and rock sites. J Seismol 10(2):137–156.  https://doi.org/10.1007/s10950-005-9006-7 CrossRefGoogle Scholar
  30. Cramer CH, Wheeler RL, Mueller CS (2002) Uncertainty analysis for seismic hazard in the southern Illinois basin. Seismol Res Lett 73(5):792–805.  https://doi.org/10.1785/gssrl.73.5.792 CrossRefGoogle Scholar
  31. DeMets C, Gordon RG, Argus DF, Stein S (1990) Current plate motions. Geophys J Int 101(2):425–478.  https://doi.org/10.1111/j.1365-246X.1990.tb06579.x CrossRefGoogle Scholar
  32. Déverchère J, Petit C, Gileva N, Radziminovitch N, Melnikova V, San'Kov V (2001) Depth distribution of earthquakes in the Baikal rift system and its implications for the rheology of the lithosphere. Geophys J Int 146(3):714–730.  https://doi.org/10.1046/j.0956-540x.2001.1484.484.x CrossRefGoogle Scholar
  33. Douglas J (2007) On the regional dependence of earthquake response spectra. ISET J Earthq Technol 44:71–99Google Scholar
  34. Dowrick D J (2009) Earthquake resistant design and risk reduction. John Wiley & Sons, HobokenGoogle Scholar
  35. El-Hussain I, Deif A, Al-Jabri K, Toksoz N, El-Hady S, Al-Hashmi S, Al-Toubi K, Al-Shijbi Y, Al-Saifi M, Kuleli S (2012) Probabilistic seismic hazard maps for the sultanate of Oman. Nat Hazards 64(1):173–210.  https://doi.org/10.1007/s11069-012-0232-3 CrossRefGoogle Scholar
  36. Emmerson B, Jackson J, McKenzie D, Priestley K (2006) Seismicity, structure and rheology of the lithosphere in the Lake Baikal region. Geophys J Int 167(3):1233–1272.  https://doi.org/10.1111/j.1365-246X.2006.03075.x CrossRefGoogle Scholar
  37. Fauzi A, Fauzi UJ (2013) Deaggregation of new national seismic hazard maps for Indonesia. In proceedings of 10 International Conference on Urban Earthquake Engineering, Tokyo, JapanGoogle Scholar
  38. Gardner J, Knopoff L (1974) Is the sequence of earthquakes in southern California, with aftershocks removed. Poissonian Bull Seismol Soc Am 64:1363–1367Google Scholar
  39. Ghebreab W (1998) Tectonics of the Red Sea region reassessed. Earth Sci Rev 45(1-2):1–44.  https://doi.org/10.1016/S0012-8252(98)00036-1 CrossRefGoogle Scholar
  40. Giner J, Molina S, Jauregui P (2002) Advantages of using sensitivity analysis in seismic hazard assessment: a case study of sites in southern and eastern Spain. Bull Seismol Soc Am 92(2):543–554.  https://doi.org/10.1785/0120000299 CrossRefGoogle Scholar
  41. Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34:185–188Google Scholar
  42. Hainzl S, Kraft T, Wassermann J, Igel H, Schmedes E (2006) Evidence for rainfall-triggered earthquake activity. Geophys Res Lett 33(19).  https://doi.org/10.1029/2006GL027642
  43. Handy MR, Brun J-P (2004) Seismicity, structure and strength of the continental lithosphere. Earth Planet Sci Lett 223(3-4):427–441.  https://doi.org/10.1016/j.epsl.2004.04.021 CrossRefGoogle Scholar
  44. Hashemi M, Alesheikh AA, Zolfaghari MR (2013) A spatio-temporal model for probabilistic seismic hazard zonation of Tehran. Comput Geosci 58:8–18.  https://doi.org/10.1016/j.cageo.2013.04.005 CrossRefGoogle Scholar
  45. Hassaballa A, Mohamed ARE, Sobaih M (2011) Sensitivity analysis of parameters for probabilistic seismic hazard for Sudan. J Sci Technol 12:02Google Scholar
  46. Ito K (1999) Seismogenic layer, reflective lower crust, surface heat flow and large inland earthquakes. Tectonophysics 306(3-4):423–433CrossRefGoogle Scholar
  47. Ito K, Nakamura S (1998) Variation in thickness of the Seismogenic layer in southwestern Japan and their relation to large inland earthquake. Annuals Disas Prev Res Inst 41(B-1):27–35Google Scholar
  48. Kagan Y (1990) Random stress and earthquake statistics: spatial dependence. Geophys J Int 102(3):573–583.  https://doi.org/10.1111/j.1365-246X.1990.tb04584.x CrossRefGoogle Scholar
  49. Kijko A (2004) Estimation of the maximum earthquake magnitude, M max. Pure Appl Geophys 161(8):1655–1681.  https://doi.org/10.1007/s00024-004-2531-4 CrossRefGoogle Scholar
  50. Kijko A, Graham G (1998) Parametric-historic procedure for probabilistic seismic hazard analysis part I: estimation of maximum regional magnitude mmax. Pure Appl Geophys 152(3):413–442.  https://doi.org/10.1007/s000240050161 CrossRefGoogle Scholar
  51. Kijko A, Sellevoll M (1989) Estimation of earthquake hazard parameters from incomplete data files. Part I. Utilization of extreme and complete catalogs with different threshold magnitudes. Bull Seismol Soc Am 79:645–654Google Scholar
  52. Kijko A, Sellevoll MA (1992) Estimation of earthquake hazard parameters from incomplete data files. Part II. Incorporation of magnitude heterogeneity. Bull Seismol Soc Am 82:120–134Google Scholar
  53. Kijko A, Lasocki S, Graham G (2001) Non-parametric seismic hazard in mines. Pure Appl Geophys 158(9):1655–1675.  https://doi.org/10.1007/PL00001238 CrossRefGoogle Scholar
  54. Knopoff L (1964) The statistics of earthquakes in Southern California. Bull Seismol Soc Am 54:1871–1873Google Scholar
  55. Konstantinou K (2010) Crustal rheology of the Santorini–Amorgos zone: implications for the nucleation depth and rupture extent of the 9 July 1956 Amorgos earthquake, southern Aegean. J Geodyn 50(5):400–409.  https://doi.org/10.1016/j.jog.2010.05.002 CrossRefGoogle Scholar
  56. Kulkarni R B, Youngs R R, Coppersmith K J (1984) Assessment of confidence intervals for results of seismic hazard analysis. In: Proceedings of the eighth world conference on earthquake engineering, vol 1. pp. 263-270Google Scholar
  57. Lin T, Baker J (2011) Probabilistic seismic hazard deaggregation of ground motion prediction models. In: 5th international conference on earthquake geotechnical engineering, Santiago, Chile. pp. 10-13Google Scholar
  58. Lombardi AM, Akinci A, Malagnini L, Mueller CS (2005) Uncertainty analysis for seismic hazard in Northern and Central Italy. Ann GeophysGoogle Scholar
  59. Maggi A, Jackson J, Mckenzie D, Priestley K (2000) Earthquake focal depths, effective elastic thickness, and the strength of the continental lithosphere. Geology 28(6):495–498.  https://doi.org/10.1130/0091-7613(2000)28<495:EFDEET>2.0.CO;2 CrossRefGoogle Scholar
  60. Marin S, Avouac J-P, Nicolas M, Schlupp A (2004) A probabilistic approach to seismic hazard in metropolitan France. Bull Seismol Soc Am 94(6):2137–2163.  https://doi.org/10.1785/0120030232 CrossRefGoogle Scholar
  61. McGuire RK, Shedlock KM (1981) Statistical uncertainties in seismic hazard evaluations in the United States. Bull Seismol Soc Am 71(4):1287–1308Google Scholar
  62. McGuire RK, Toro G (1986) Methods of earthquake ground motion estimation for the eastern United States. Electric Power Research Institute Research Project No. RP2556-16, prepared by Risk Engineering, Inc., ActonGoogle Scholar
  63. Meletti C, Galadini F, Valensise G, Stucchi M, Basili R, Barba S, Vannucci G, Boschi E (2008) A seismic source zone model for the seismic hazard assessment of the Italian territory. Tectonophysics 450(1-4):85–108.  https://doi.org/10.1016/j.tecto.2008.01.003 CrossRefGoogle Scholar
  64. Mihali S, Maja O, Krka M (2011) Seismic microzonation: A review of principles and practice. Geofizika 28(1):5-20Google Scholar
  65. Motohashi S, Ebisawa K, Sakagami M (2004). Evaluation of the Seismogenic Layer Depth in Japan Using the JMA Catalogue. In proceedings of OECD/NEA CSNI Workshop, Tokyo, JapanGoogle Scholar
  66. Muço B, Alexiev G, Aliaj S, Elezi Z, Grecu B, Mandrescu N, Milutinovic Z, Radulian M, Ranguelov B, Shkupi D (2012) Geohazards assessment and mapping of some Balkan countries. Nat Hazards 64(2):943–981.  https://doi.org/10.1007/s11069-012-0185-6 CrossRefGoogle Scholar
  67. Öncel A, Alptekin Ö (1999) Effect of aftershocks on earthquake hazard estimation: an example from the North Anatolian fault zone. Nat Hazards 19(1):1–11.  https://doi.org/10.1023/A:1008139802609 CrossRefGoogle Scholar
  68. Peruš I, Fajfar P (2009) How reliable are the ground motion prediction equations. In: Proceedings of the 20th international conference on structural mechanics in reactor technology (SMiRT 20), Espoo, Paper, vol. 9Google Scholar
  69. Raoof M, Herrmann R, Malagnini L (1999) Attenuation and excitation of three-component ground motion in southern California. Bull Seismol Soc Am 89:888–902Google Scholar
  70. Reasenberg P (1985) Second-order moment of central California seismicity, 1969–1982. J Geophys Res: Solid Earth (1978–2012) 90(B7):5479–5495.  https://doi.org/10.1029/JB090iB07p05479 CrossRefGoogle Scholar
  71. Reasenberg PA, Jones LM (1989) Earthquake hazard after a mainshock in California. Science 243(4895):1173–1176.  https://doi.org/10.1126/science.243.4895.1173 CrossRefGoogle Scholar
  72. Rehman F, El-Hady SM, Atef AH, Harbi HM (2016) Seismic hazard assessment of western Coastal Province of Saudi Arabia: deterministic approach. Earthq Sci 29(5):299–309CrossRefGoogle Scholar
  73. Sabetta F, Lucantoni A, Bungum H, Bommer JJ (2005) Sensitivity of PSHA results to ground motion prediction relations and logic-tree weights. Soil Dyn Earthq Eng 25(4):317–329.  https://doi.org/10.1016/j.soildyn.2005.02.002 CrossRefGoogle Scholar
  74. Sadek A (2004) Seismic map for the state of Kuwait. Emirates J Eng Res 9:53–58Google Scholar
  75. Sadigh K, Chang C-Y, Egan J, Makdisi F, Youngs R (1997) Attenuation relationships for shallow crustal earthquakes based on California strong motion data. Seismol Res Lett 68(1):180–189.  https://doi.org/10.1785/gssrl.68.1.180 CrossRefGoogle Scholar
  76. Scholz CH (2002) The mechanics of earthquakes and faulting, 2nd edn. Cambridge University Press, UK, p 496.  https://doi.org/10.1017/CBO9780511818516 CrossRefGoogle Scholar
  77. Scordilis E (2006) Empirical global relations converting M S and m b to moment magnitude. J Seismol 10(2):225–236.  https://doi.org/10.1007/s10950-006-9012-4 CrossRefGoogle Scholar
  78. Searle R, Escartin J (2004) The rheology and morphology of oceanic lithosphere and mid-ocean ridges. Geophys Monogr Ser 148:63–93Google Scholar
  79. Sokolov VY, Wenzel F, Mohindra R (2009) Probabilistic seismic hazard assessment for Romania and sensitivity analysis: a case of joint consideration of intermediate-depth (Vrancea) and shallow (crustal) seismicity. Soil Dyn Earthq Eng 29(2):364–381.  https://doi.org/10.1016/j.soildyn.2008.04.004 CrossRefGoogle Scholar
  80. Stepp JC, Silva WJ, McGuire RK, Sewell RW (1993) Determination of earthquake design loads for a high level nuclear waste repository facility (No. CONF-9310102--VOL. 2). In: Proceedings of the Natural Phenomena hazards Mitigation Conference, Vol 2. pp 651-657, Oct. 19-22, Atlanta GAGoogle Scholar
  81. Stern RJ (1985) The Najd Fault System, Saudi Arabia and Egypt: a Late Precambrian rift-related transform system? Tectonics 4(5):497–511.  https://doi.org/10.1029/TC004i005p00497 CrossRefGoogle Scholar
  82. Stern RJ, Johnson P (2010) Continental lithosphere of the Arabian Plate: a geologic, petrologic, and geophysical synthesis. Earth Sci Rev 101(1-2):29–67.  https://doi.org/10.1016/j.earscirev.2010.01.002 CrossRefGoogle Scholar
  83. Toro GR, Abrahamson NA, Schneider JF (1997) Model of strong ground motions from earthquakes in central and eastern North America: best estimates and uncertainties. Seismol Res Lett 68(1):41–57.  https://doi.org/10.1785/gssrl.68.1.41 CrossRefGoogle Scholar
  84. Van Stiphout T, Zhuang J, Marsan D (2012) Seismicity declustering, community online resource for statistical seismicity analysis.  https://doi.org/10.5078/corssa-52382934
  85. Vipin K, Sitharam T (2013) Delineation of seismic source zones based on seismicity parameters and probabilistic evaluation of seismic hazard using logic tree approach. J Earth Syst Sci 122(3):661–676.  https://doi.org/10.1007/s12040-013-0300-4 CrossRefGoogle Scholar
  86. Woessner J, Wiemer S (2005) Assessing the quality of earthquake catalogues: estimating the magnitude of completeness and its uncertainty. Bull Seismol Soc Am 95(2):684–698.  https://doi.org/10.1785/0120040007 CrossRefGoogle Scholar
  87. Wong IG, District, U.S.A.C.o.E.J, Corporation, U (2004) Deterministic and probabilistic seismic hazard analyses: Portuguese dam. URS Corporation, Puerto RicoGoogle Scholar
  88. Yazdani A, Kowsari M (2013) Earthquake ground-motion prediction equations for northern Iran. Nat Hazards 69(3):1877–1894.  https://doi.org/10.1007/s11069-013-0778-8 CrossRefGoogle Scholar
  89. Youssef SEH (2015) Seismicity and seismotectonic setting of the Red Sea and adjacent areas. In: The Red Sea. Springer, Berlin Heidelberg, pp 151–159Google Scholar
  90. Zahran HM, Sokolov V, Youssef SEH, Alraddadi WW (2015) Preliminary probabilistic seismic hazard assessment for the Kingdom of Saudi Arabia based on combined areal source model: Monte Carlo approach and sensitivity analyses. Soil Dyn Earthq Eng 77:453–468.  https://doi.org/10.1016/j.soildyn.2015.06.011 CrossRefGoogle Scholar
  91. Zahran HM, Sokolov V, Roobol MJ, Stewart, IC, Youssef SEH, El-Hadidy M (2016) On the development of a seismic source zonation model for seismic hazard assessment in western Saudi Arabia. J Seismol 20(3):747–769Google Scholar
  92. Zhang Z, Deng Y, Chen L, Wu J, Teng J, Panza G (2013) Seismic structure and rheology of the crust under mainland China. Gondwana Res 23(4):1455–1483.  https://doi.org/10.1016/j.gr.2012.07.010 CrossRefGoogle Scholar
  93. Zhuang J, Ogata Y, Vere-Jones D (2002) Stochastic declustering of space-time earthquake occurrences. J Am Stat Assoc 97(458):369–380.  https://doi.org/10.1198/016214502760046925 CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2017

Authors and Affiliations

  1. 1.Department of Earth SciencesUniversity of SargodhaSargodhaPakistan
  2. 2.Department of Geology & GeophysicsKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Geophysics Department, Faculty of Earth SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
  4. 4.Earthquake DepartmentNational Research Institute of Astronomy and GeophysicsHelwanEgypt

Personalised recommendations