Advertisement

Landslide hazard mapping along national highway-154A in Himachal Pradesh, India using information value and frequency ratio

  • Kanwarpreet SinghEmail author
  • Virender Kumar
Original Paper

Abstract

For the socio-economic development of a country, the highway network plays a pivotal role. It has therefore become an imperative to have landslide hazard assessment along these roads to provide safety. The current study presents landslide hazard zonation maps, based on the information value method and frequency ratio method using GIS on 1:50,000 scale by generating the information about the landslide influencing factors. The study was carried out in the year 2017 on a part of Ravi river catchment along one of the landslide-prone Chamba to Bharmour road corridor of NH-154A in Himachal Pradesh, India. A number of landslide triggering geo-environmental factors like “slope, aspect, relative relief, soil, curvature, Land Use and Land Cover (LULC), lithology, drainage density, and lineament density” were selected for landslide hazard mapping based on landslide inventory. The landslide inventory has been developed using satellite imagery, Google earth and by doing exhaustive field surveys. A digital elevation model was used to generate slope gradient, slope aspect, curvature, and relative relief map of the study area. The other information, i.e., soil maps, geological maps, and toposheets, have been collected from various departments. The landslide hazard zonation map was categorized namely “very high hazard, high hazard, medium hazard, low hazard, and very low hazard.” The results from these two methods have been validated using area under curve (AUC) method. It has been found that hazard zonation map prepared using frequency ratio model had a prediction rate of 75.37% while map prepared using information value method had prediction rate of 78.87%. Hence, on the basis of prediction rate, the landslide hazard zonation map, obtained using information value method, was experienced to be more suitable for the study area.

Keywords

Landslide mapping Information value method Frequency ratio method Remote sensing and GIS Highway corridor 

References

  1. Achour Y, Boumezbeur A, Hadji R, Chouabbi A, Cavaleiro V, Bendaoud EA (2017) Landslide susceptibility mapping using analytic hierarchy process and information value methods along a highway road section in Constantine, Algeria. Arab J Geosci 10(8):194.  https://doi.org/10.1007/s12517-017-2980-6 CrossRefGoogle Scholar
  2. Ahmed F, Rogers JD, Ismail EH (2014) A regional level preliminary landslide susceptibility study of the upper Indus river basin. Eur J Remote Sens 2014(47):343–373CrossRefGoogle Scholar
  3. Akbar T, Ha S (2011) Landslide hazard zoning along Himalaya Kaghan Valley of Pakistan-by integration of GPS, GIS, and remote sensing technology. Landslides 8(4):527–540.  https://doi.org/10.1007/s10346-011-0260-1 CrossRefGoogle Scholar
  4. Akgun A (2011) A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at Lzmir, Turkey. Landslides 9(1):93–106.  https://doi.org/10.1007/s10346-011-0283-7 CrossRefGoogle Scholar
  5. Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58:21–44CrossRefGoogle Scholar
  6. Anbalagan R (1992) Landslide hazard evaluation and zonation mapping in mountainous terrain. Eng Geol 32:69–277CrossRefGoogle Scholar
  7. Anbalagan R, Kumar R, Lakshmanan K, Parida S, Neethu S (2015) Landslide hazard zonation mapping using frequency ratio and fuzzy logic approach, a case study of Lachung Valley, Sikkim. Geo-environ Disasters 2(1):6.  https://doi.org/10.1186/s40677-014-0009-y CrossRefGoogle Scholar
  8. Andrea F, Andrea G, Giuseppe M (2010) Rock slopes failure susceptibility analysis: from remote sensing measurements to geographic information system raster modules. Am J Environ Sci 6(6):489–494.  https://doi.org/10.3844/ajessp.2010.489.494
  9. Arora M, Das Gupta A, Gupta R (2004) An artificial neural network approach for landslide hazard zonation in the Bhagirathi (ganga) valley, Himalaya. Int J Remote Sens 25(3):559–572.  https://doi.org/10.1080/0143116031000156819 CrossRefGoogle Scholar
  10. Ayalew L, Yamagishi H (2005) The application of GIS based logistic regression for landslide susceptibility mapping in the Kakuda–Yahiko mountains, Central Japan. Geomorphology 65(1/2):15–31.  https://doi.org/10.1016/j.geomorph.2004.06.010 CrossRefGoogle Scholar
  11. Balsubramani K, Kumaraswamy K (2013) Application of geospatial technology and information value technique in landslide hazard zonation mapping: a case study of Giri Valley, Himachal Pradesh. Disaster Adv 6:38–47Google Scholar
  12. Balteanu D, Chendes V, Sima M, Enciu P (2010) A country-wide spatial assessment of landslide susceptibility in Romania. Geophys J R Astron Soc 124:102–112Google Scholar
  13. Blahut J, VanWesten C, Sterlacchini S (2010) Analysis of landslide inventories for accurate prediction of debris-flow source areas. Geophys J R Astron Soc 119:36–51Google Scholar
  14. Brooks SM, Crozier MJ, Glade TW, Anderson MG (2004) Towards establishing climatic thresholds for slope instability: use of a physically-based combined soil hydrology-slope stability model. Pure Appl Geophys 16:881–905CrossRefGoogle Scholar
  15. Cardinali M, Reichenbach P, Guzzetti F, Ardizzone F, Antonini G, Galli M, Cacciano M, Castellani M, Salvati P (2002) A geomorphological approach to estimation of landslide hazards and risks in Umbria, Central Italy. Nat Hazards Earth Syst Sci 2(1/2):57–72.  https://doi.org/10.5194/nhess-2-57-2002 CrossRefGoogle Scholar
  16. Champatiray P (2000) Perationalization of cost-effective methodology for landslide hazard zonation using RS and GIS: IIRS initiative. In: Roy P, Van Westen C, Jha V, Lakhera R (eds) Natural disasters and their mitigation; remote sensing and geographical information system perspectives. Indian Institute of Remote Sensing, Dehradun, pp 95–101Google Scholar
  17. Champatiray P, Dimri S, Lakhera R, Sati S (2007) Fuzzy based methods for landslide hazard assessment in active seismic zone of Himalaya. Landslides 4(2):101–110.  https://doi.org/10.1007/s10346-006-0068-6 CrossRefGoogle Scholar
  18. Chang K and Liu J (2004) Geo-imagery bridging continents. Landslide features interpreted by neural network method using a high resolution satellite image and digital topographical data. Proceedings of 20th ISPRS congress, IstambulGoogle Scholar
  19. Chen W, Chai H, Zhao Z, Wang Q, Hong H (2016) Landslide susceptibility mapping based on GIS and support vector machine models for the Qianyang County, China. Environ Earth Sci 75(6):1–13Google Scholar
  20. Chung CJF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30(3):451–472.  https://doi.org/10.1023/B:NHAZ.0000007172.62651.2b CrossRefGoogle Scholar
  21. Chung MC, Tan CH, Chen CH (2016) Local rainfall thresholds for forecasting landslide occurrence: Taipingshan landslide triggered by typhoon Saola. Landslides 14(1):19–33.  https://doi.org/10.1007/s10346-016-0698-2 CrossRefGoogle Scholar
  22. Courture R (2011) Landslide Terminology - National Technical Guidelines and Best Practices on Landslides. Geological Survey of Canada. p 12, Open File 6824Google Scholar
  23. Crosta GB and Frattini P (2003) Distributed modelling of shallow landslides triggered by intense rainfall. Natural hazards and earth system. Science 81–93Google Scholar
  24. Cruden DM and Varnes DJ (1996) Landslide types and processes, special report, Transportation Research Board, National Academy of Sciences 247:36–75Google Scholar
  25. Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42(3):213–228.  https://doi.org/10.1016/S0169-555X(01)00087-3 CrossRefGoogle Scholar
  26. Das I, Sahoo S, Van Westen C, Stein A, Hack R (2010) Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas (India). Geomorphology 114(4):627–637.  https://doi.org/10.1016/j.geomorph.2009.09.023 CrossRefGoogle Scholar
  27. Deeken A, Thiede RC, Sobel ER, HouriganJK SMR (2011) Exhumational variability within the Himalaya of northwest India. Earth Planet Sci Lett 305(1-2):103–114.  https://doi.org/10.1016/j.epsl.2011.02.045 CrossRefGoogle Scholar
  28. Demir G, Aytekin M, Akgun A, Ikizler SB, Tatar O (2013) A comparison of landslide susceptibility mapping of the eastern part of the north Anatolian fault zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods. Nat Hazards 65(3):1481–1506.  https://doi.org/10.1007/s11069-012-0418-8 CrossRefGoogle Scholar
  29. Ercanoglu M, Gokceoglu C (2004) Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (west Black Sea region, Turkey). Eng Geol 75(3-4):229–250.  https://doi.org/10.1016/j.enggeo.2004.06.001 CrossRefGoogle Scholar
  30. Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27(8):861–874.  https://doi.org/10.1016/j.patrec. 2005.10.010 CrossRefGoogle Scholar
  31. Feizizadeh B, Blaschke T, Nazmfar H, RezaeiMoghaddam MH (2013) Landslide susceptibility mapping for the Urmia Lake basin, Iran: a multi-criteria evaluation approach using GIS. Int J Environ Res 7(2):319–3336Google Scholar
  32. Floris M, Mari M, Romeo RW, Gori U (2004) Modelling of landslide-triggering factors - a case study in the northern Apen- nines, Italy, Lect. Notes Earth Sci 104:745–753CrossRefGoogle Scholar
  33. Frank W, Grasemann B, Guntli P, Miller C (1995) Geological map of the Kishtwar-Chamba-Kulu region (NWHimalaya India). Jahrb Geol Bundesanst 138(2):299–308Google Scholar
  34. Frattini P, Crosta G, Carrara A (2010) Techniques for evaluating the performance of landslide susceptibility models. Eng Geol 111(1-4):62–72.  https://doi.org/10.1016/j.enggeo.2009.12.004 CrossRefGoogle Scholar
  35. Giannecchini R (2005) Rainfall triggering soil slips in the southern Apuan alps (Tuscany, Italy). Adv Geosci 2:21–24 http://www.adv-geosci.net/2/21/2005/ CrossRefGoogle Scholar
  36. Gomez H, Bradshow R, Mather P (2000) Monitoring the distribution of shallow landslide prone areas using remote sensing, DTM and GIS - a case study from the tropical Andes of Venezuela. In: Casanova E (ed) Remote sensing in 21st century: economic and environmental applications. Balkema, Rotterndam, pp 395–401Google Scholar
  37. Guru B, Veerappan R, Mangminlen T (2016) Landslide susceptibility zonation mapping using frequency ratio and fuzzy gamma operator models in part of NH-39, Manipur, India. Nat Hazards 84:465–488CrossRefGoogle Scholar
  38. Guzzetti F (2003) Landslide hazard assessment and risk evaluation: limits and perspectives, proceedings of the 4th EGS Plinius conference held at Mallorca. Spain. University de les IllesBalears, Spain, pp 1–4Google Scholar
  39. Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31(1):181–216.  https://doi.org/10.1016/S0169-555X(99)00078-1 CrossRefGoogle Scholar
  40. Guzzetti F, Reichenbach P, Ardizzone M, Cardinali M, Galli M (2006) Estimating the quality of landslides susceptibility models. Geomorphology 81(1-2):166–184.  https://doi.org/10.1016/j.geomorph.2006.04.007 CrossRefGoogle Scholar
  41. Hung LQ, Van Hai TH, Duc DM, Ha LTC, Son PV, Khanh NH, Binh LT (2015) Landslide susceptibility mapping by combining the analytical hierarchy process and weighted linear combination methods: a case study in the upper lo river catchment (Vietnam). LandslidesGoogle Scholar
  42. Hutchinson JN (1995) Landslide hazard assessment. In: proc VI Int. Symp on landslides, Christchurch. 1:1805–1842Google Scholar
  43. Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36(7):1897–1910.  https://doi.org/10.1029/2000WR900090 CrossRefGoogle Scholar
  44. Jaiswal P, Van Westen CJ, Jetten V (2010) Quantitative landslide hazard assessment along a transportation corridor in southern India. Eng Geol 116(3-4):236–250.  https://doi.org/10.1016/j.enggeo.2010.09.005 CrossRefGoogle Scholar
  45. Kannan M, Saranathan E, Anabalagan R (2013) Landslide vulnerability mapping using frequency ratio model: a geospatial approach in Bodi–Bodimettu Ghat section, Theni district, Tamil Nadu, India. Arab J Geosci 6(8):2901–2913.  https://doi.org/10.1007/s12517-012-0587-5 CrossRefGoogle Scholar
  46. Kanungo DP, Sharma S (2014) Rainfall thresholds for prediction of shallow landslides around Chamoli-Joshimath region, Garhwal Himalayas, India. Landslides 11(4):629–638.  https://doi.org/10.1007/s10346-013-0438-9 CrossRefGoogle Scholar
  47. Kanungo DP, Arora MK, Sarkar S, Gupta RP (2009) Landslide susceptibility zonation (LSZ) mapping – areview. J South Asia Dis Stu 2:81–105Google Scholar
  48. Kaur H, Gupta S, Parkash S (2017) Comparative evaluation of various approaches for landslide hazard zoning: a critical review in Indian perspectives. Spat Inf Res 25(3):389–398.  https://doi.org/10.1007/s41324-017-0105-7 CrossRefGoogle Scholar
  49. Kavzoglu T, Sahin EK, Colkesen I (2014) Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 11(3):425–439.  https://doi.org/10.1007/s10346-013-0391-7 CrossRefGoogle Scholar
  50. Kayastha P, Dhital MR, De Smedt F (2013) Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: a case study from the Tinau watershed, west Nepal. Comput Geosci 52:398–408.  https://doi.org/10.1016/j.cageo.2012.11.003 CrossRefGoogle Scholar
  51. Kumar R, Anbalagan R (2016) Landslide susceptibility mapping using analytical hierarchy process (AHP) in Tehri reservoir rim region, Uttarakhand. J Geol Soc India 87(3):271–286.  https://doi.org/10.1007/s12594-016-0395-8 CrossRefGoogle Scholar
  52. Kumar S, Mahajan AK (2001) Seismotectonics of the Kangra region north Himalaya. Tectonophys 331(4):359–371.  https://doi.org/10.1016/S0040-1951(00)00293-6 CrossRefGoogle Scholar
  53. Lee S (2005) Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. Int J Remote Sens 26(7):1477–1491.  https://doi.org/10.1080/01431160412331331012 CrossRefGoogle Scholar
  54. Lee S, Min K (2001) Statistical analysis of landslide susceptibility at Yongin, Korea. Environ Geol 40(9):1095–1113.  https://doi.org/10.1007/s002540100310 CrossRefGoogle Scholar
  55. Lee S, Pradhan B (2006) Probabilistic landslide hazard and risk mapping on Penang Island, Malaysia. J Earth Syst Sci 115:661–672CrossRefGoogle Scholar
  56. Lee S, Talib JA (2005) Probabilistic landslide susceptibility and factor effect analysis. Environ Geol 47(7):982–990.  https://doi.org/10.1007/s00254-005-1228-z CrossRefGoogle Scholar
  57. Lee S, Hwang J, Park I (2013) Application of data-driven evidential belief functions to landslide susceptibility mapping in Jinbu, Korea. Catena 100:15–30.  https://doi.org/10.1016/j.catena.2012.07.014 CrossRefGoogle Scholar
  58. Leir M, Michell A, Ramsay S (2004) Regional landslide hazard susceptibility mapping for pipelines in British Columbia. Geo-engineering for the society and its environment. In: 57th Canadian geotechnical conference and the 5th joint CGS-IAH conference, pp 1–9Google Scholar
  59. Marchi L, Arattano M, Deganutti AM (2002) Ten years of debris- flow monitoring in the Moscardo torrent (Italian alps). Geomorphology 46(1-2):1–17.  https://doi.org/10.1016/S0169-555X(01)00162-3 CrossRefGoogle Scholar
  60. Mezughi TH, Akhir JM, Rfek AG, Abdullah I (2011) Landslide susceptibility assessment using frequency ratio model applied to an area along the E-W highway (Gerik-Jeli). Am J Environ Sci 7(1):43–50.  https://doi.org/10.3844/ajessp.2011.43.50 CrossRefGoogle Scholar
  61. Mondal S, Maiti R (2012) Landslide susceptibility analysis of shiv-Khola watershed, Darjiling; a remote sensing and GIS based analytic hierarchy process. J Indian Soc Remote Sens 3:483–496CrossRefGoogle Scholar
  62. Montrasio L, Valentino R, Losi GL (2012) Shallow landslides triggered by rainfalls: modeling of some case histories in the Reggiano Apennine (Emilia Romagna region, northern Italy). Nat Hazards 60(3):1231–1254.  https://doi.org/10.1007/s11069-011-9906-5 CrossRefGoogle Scholar
  63. Nagarajan R, Roy A, Vinodkumar R, Khire M (2000) Landslide hazard susceptibility mapping based on terrain and climatic factors for tropical monsoon region. Eng Geol 58:275–287Google Scholar
  64. Nandi A, Shakoor A (2009) A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Eng Geol 110(1-2):11–20.  https://doi.org/10.1016/j.enggeo.2009.10.001 CrossRefGoogle Scholar
  65. PandeyDD, SinghKP, SardaVK (2016) GIS based inventory study of landslide hazard zonation in LahaulSpiti Valley between Rohtang to Baralacha la, Himachal Pradesh, India. Int J Earth Sci Eng 2847–2854Google Scholar
  66. Parise M (2002) Landslide hazard zonation of slopes susceptible to rock falls and topples. Nat Hazards Earth Syst Sci 2(1/2):37–49.  https://doi.org/10.5194/nhess-2-37-2002 CrossRefGoogle Scholar
  67. Poudyal CP, Chang C, Oh HJ, Lee S (2010) Landslide susceptibility maps comparing frequency ratio and artificial neural networks: a case study from the Nepal Himalaya. Environ Earth Sci 61(5):1049–1064.  https://doi.org/10.1007/s12665-009-0426-5 CrossRefGoogle Scholar
  68. Pourghasemi HR, Pradhan B, Gokceoglu C (2012) Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat Hazards 63(2):965–996.  https://doi.org/10.1007/s11069-012-0217-2 CrossRefGoogle Scholar
  69. Pradhan B (2010) Application of an advanced fuzzy logic model for landslide susceptibility analysis. Int J Comput Intel Syst 3(3):370–381.  https://doi.org/10.1080/18756891.2010.9727707 CrossRefGoogle Scholar
  70. Pradhan Ananta MS, Kim YT (2017) (2017) landslide susceptibility mapping of Phewa catchment using multilayer perceptron artificial neural network. Nep J Environ Sci 4:1–9Google Scholar
  71. Pradhan B, Lee S (2010) Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environ Earth Sci 60(5):1037–1054.  https://doi.org/10.1007/s12665-009-0245-8 CrossRefGoogle Scholar
  72. Preuth T, Glade T, Demoulin A (2010) Stability analysis of a human-influenced landslides in eastern Belgium. Geophys J R Astron Soc 120:4–98Google Scholar
  73. Ramakrishnan D, Singh TN, Verma AK, Gulati A, Tiwari KC (2013) Soft computing and GIS for landslide susceptibility assessment in Tawaghat area, Kumaon Himalaya, India. Nat Hazards 65(1):315–330.  https://doi.org/10.1007/s11069-012-0365-4 CrossRefGoogle Scholar
  74. Ramesh V, Anbazhagan S (2015) Landslide susceptibility assessment along Kohli hills Ghat road section India using frequency ratio, relative effect and fuzzy logic models. Environ Earth Sci 73(12):8009–8021.  https://doi.org/10.1007/s12665-014-3954-6 CrossRefGoogle Scholar
  75. Ran QH, Su DY, Fu XD, Wang GQ, He ZG (2012) Physically-based approach to analyze rainfall-triggered landslide using hydraulic gradient as slide direction. Appl Phys Eng 13(12):943–957Google Scholar
  76. Razavizadeh S, Solaimani K, Massironi M, Kavian A (2017) Mapping landslide susceptibility with frequency ratio, statistical index, and weights of evidence models: a case study in northern Iran. Environ Earth Sci 76(14):499.  https://doi.org/10.1007/s12665-017-6839-7 CrossRefGoogle Scholar
  77. Saaty T (2008) Decision making with the analytical hierarchy process. Int J Services Sci 1(1):83–98.  https://doi.org/10.1504/IJSSCI.2008.017590 CrossRefGoogle Scholar
  78. Salciarini D, Tamagnini C, Conversini P, Rapinesi S (2012) Spatially distributed rainfall thresholds for the initiation of shallow landslides. Nat Hazards 6:229–245CrossRefGoogle Scholar
  79. Sarkar S, Kanungo D, Mehrotra G (1995) Landslide hazard zonation: a case study of garhwal Himalaya, India. Mt Res Dev 15(4):301–309.  https://doi.org/10.2307/3673806 CrossRefGoogle Scholar
  80. Sarkar S, Kanungo D, Patra A, Kumar P (2006) Disaster mitigation of debris flows, slope failures and landslides. GIS based landslide susceptibility mapping- a case study in Indian Himalaya. Universal Academy Press, Tokyo, pp 617–624Google Scholar
  81. Sengupta A, Gupta S, Anbarasu K (2010) Rainfall thresholds for the initiation of landslide at LantaKhola in north Sikkim, India. Nat Hazards 52(1):31–42.  https://doi.org/10.1007/s11069-009-9352-9 CrossRefGoogle Scholar
  82. SharmaVK, KumarH, Kumar P (2005) Macro-seismic investigation of Chamba earthquake of 14th April, 2005, Himachal Pradesh. Geol Surv India, Unpublished Report, FS2004–2005Google Scholar
  83. Sharma L, Patel N, Ghosh M, Debnath P (2009) Geographical information system based landslide probabilistic model with Trivariate approach– acase study in Sikkim Himalaya. Eighteenth United Nations regional cartographic conference for Asia and the Pacific. Economic and Social Council, UN, BankokGoogle Scholar
  84. Sujatha ER, Rajamanickam GV, Kumaravel P (2012) Landslide susceptibility analysis using probablistic certainty factor approach: a case study on Tevankarai stream watershed, India. J Earth Syst Sci 121(5):1337–1350.  https://doi.org/10.1007/s12040-012-0230-6 CrossRefGoogle Scholar
  85. Trampoglou P, Loupasakis C (2017) Mining geohazards susceptibility and risk mapping: The case of the Amyntaio open-pit coal mine, West Macedonia, Greece. Environ Earth Sci 76:542CrossRefGoogle Scholar
  86. Van Westen CJ (1993) Application of geographic information systems to landslide hazard zonation. ITC publication, vol. 15. International Institute for Aerospace and Earth Resources Survey, Enschede, pp245Google Scholar
  87. Van Westen CJ, Rengers N, Soeters R (2003) Use of geomorphological information in indirect landslide susceptibility assessment. Nat Hazards 30(3):399–419.  https://doi.org/10.1023/B:NHAZ.0000007097.42735.9e CrossRefGoogle Scholar
  88. Varnes DJ (1978) Slope movement typesandprocesses. In: Schuster RL, Krizek RJ (eds) Special report 176:Landslides: analysis and control. Transportation and Road Research Board, National Academy of Science, Washington D. C, pp 11–33Google Scholar
  89. Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. Natural hazard, 3. United Nations Educational, Scientific and Cultural Organization. pp63Google Scholar
  90. Wadia DN (1931) The syntaxes of the north-west Himalya-its rocks, tectonics, and orogeny. Rec Geol Surv India 65:189–220Google Scholar
  91. Wang H, Sassa K (2005) Comparative evaluation of landslide susceptibility in Minamata area, Japan. Environ Geol 47(7):956–966.  https://doi.org/10.1007/s00254-005-1225-2 CrossRefGoogle Scholar
  92. White H and Senior M (1983) Transport geography, Longman, LondonGoogle Scholar
  93. Yalcin A (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena 72(1):1–12.  https://doi.org/10.1016/j.catena.2007.01.003 CrossRefGoogle Scholar
  94. Yan TZ (1988) Recent advances of quantitative prognoses of landslide in China. In: Proceedings of the fifth international symposium on landslides, Lausanne, Switzerland. 2:1263–1268Google Scholar
  95. Yin KL and Yan TZ (1988) Statistical prediction model for slope instability of metamorphosed rocks. In: Bonnard C (ed) Proc., fifth international symposium in landslides, Lausanne, Vol. 2., a.A. Balkema, Rotterdam, pp 1269–1272Google Scholar
  96. Zezere J (2002) Landslide susceptibility assessment considering landslide typology. A case study in the area north of Lisbon (Portugal). Nat Hazard Earth Syst Sci 2:73–82CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2017

Authors and Affiliations

  1. 1.Civil Engineering DepartmentNational Institute of TechnologyHamirpurIndia

Personalised recommendations