Study on potential tsunami by earthquake in subduction zone of Sulawesi Sea

  • Alfath Abu Bakar
  • Djati Mardiatno
  • Muh Aris MarfaiEmail author
Original Paper


Indonesia is one country in the world featuring a complex tectonic structure. This condition makes earthquakes often occur in many areas of this country and as an earthquake rages beneath the sea, it will potentially trigger tsunami. One of the areas in Indonesia with a high seismic activity is Sulawesi region particularly in the Sulawesi Sea subduction zone, making it important to carry out a study on the potential tsunami at this location. The purpose of this study was to analyze the existing huge potential energy in Sulawesi Sea subduction zone and to identify tsunami modeling likely to occur based on the potential energy of the region. The approach used in assessing the tsunami disaster was the calculation of the potential energy of an earthquake and tsunami modeling based on the potential energy. The method used in this research was the least squares method for the calculation of potential energy, and near-field tsunami modeling with the assistance of TUNAMI-N2 COD. The research finding has shown that the Sulawesi Sea subduction zone has potential energy of 1.35469 × 1023 erg, equivalent to an earthquake with a magnitude of 7.6 Mw. The tsunami modeling made shown the average wave propagation reaching ashore within 12.3 min with a height varying between 0.1 and > 3 m. The tsunami modeling also indicated that there are seven sub-districts in Buol District, Central Sulawesi, which is affected by a significant tsunami.


Earthquake Tsunami Potential energy TUNAMI 



The authors would like to thank to the Indonesian Agency for Meteorology, Climatology, and Geophysics and the Faculty of Geography Universitas Gadjah Mada that supported this research as part of second batch academic cooperation program began in 2015.


  1. Annunziato A (2007) The tsunami assessment modelling system by The Joint Research Centre. J Tsunami Soc Int Sci Tsunami Hazards 26(2):70–92Google Scholar
  2. Barrantes SC, Narayanan R, Mayerle R (2013) Several tsunami scenarios at The North Sea and their consequences at the German Bight. J Tsunami Soc Int Sci Tsunami Hazards 32(1):8–28 ISSN 8755–6839Google Scholar
  3. BMKG (2016) Basis Data Tsunami.
  4. Bock Y, Prawirodirdjo L, Genrich JF, Stevens CW, McCaffrey R, Subarya C, Puntodewo SSO, Calais E (2003) Crustal motion in Indonesia from global positioning system measurements. J Geophys Res 108(B8):2367CrossRefGoogle Scholar
  5. Chlieh M, Avouac JP, Sieh K, Natawidjaja DH, Galetzka J (2008) Heterogeneous coupling of the Sumatran megathrust constrained by geodetic and paleogeodetic measurements. J Geophys Res 113:B05305. CrossRefGoogle Scholar
  6. Gailler A, Hébert H, Loevenbruck A, Hernandez B (2013) Simulation systems for tsunami wave propagation forecasting within the French tsunami warning center. Nat Hazards Earth Syst Sci 2013:2465–2482. CrossRefGoogle Scholar
  7. Gunawan T (2010) Analisis energi gempabumi daerah tasikmalaya dan sekitarnya, Laporan Kerja : Akademi Meteorologi dan Geofisika JakartaGoogle Scholar
  8. Horspool N, Pranantyo I, Griffin J, Latief H, Natawidjaja DH, Kongko W, Cipta A, Bustaman B, Anugrah SD, Thio HK (2014) A probabilistic tsunami hazard assessment for Indonesia. Nat Hazards Earth Syst Sci 14:3105–3122. CrossRefGoogle Scholar
  9. Imamura F, Yalciner AC, Ozyurt G (2006) Tsunami Modelling Manual (TUNAMI Model). Tohoku University, JapanGoogle Scholar
  10. Jaswadi RR, Hadi MP (2012) Tingkat Kerentanan dan Kapasitas Masyarakat dalam Menghadapi Risiko Banjir di Kecamatan Pasarkliwon Kota Surakarta. Majalah Geografi Indones 26(1):119–148 ISSN 0125-1790, Fakultas Geografi UGMGoogle Scholar
  11. Kongko W, Hidayat R (2014) Earthquake-tsunami in South Jogjakarta Indonesia: potential, simulation models, and related mitigation efforts. IOSR J Appl Geol Geophys (IOSR-JAGG) 2(3):18–22 e-ISSN: 2321–0990, p-ISSN: 2321–0982CrossRefGoogle Scholar
  12. Kreemer C, Holt WE, Goes S, Govers R (2000) Active deformation in eastern Indonesia and the Philippines from GPS and seismicity data. J Geophys Res 105(B1):663–680CrossRefGoogle Scholar
  13. Lavigne F, Gomez C, Giffo M, Wassmer P, Hoebreck C, Mardiatno D, Priyono J, Paris R (2007) Field observations of the 17 July 2006 tsunami in Java. Nat Hazards Earth Syst Sci 7,–183CrossRefGoogle Scholar
  14. Madlazim (2013) Assessment of tsunami generation potential through rapid analysis of seismic parameters case study: comparison of the Sumatra earthquakes of 6 April and 25 October 2010. J Tsunami Soc Int Sci Tsunami Hazards 32(1):29–38Google Scholar
  15. Reese S, Cousins WJ, Power WL, Palmer NG, Tejakusuma IG, Nugrahadi S (2007) Tsunami vulnerability of buildings and people in South Java—field observations after the July 2006 Java tsunami. Nat Hazards Earth Syst Sci 7:573–589 CrossRefGoogle Scholar
  16. Rusli, Irjan, dan Rudyanto A (2010) Pemodelan Tsunami sebagai Bahan Mitigasi Bencana Studi Kasus Sumenep dan Kepulauannya. Jurnal Neutrino 2(2):164–182Google Scholar
  17. Shohaya JN, Chasanah U, Mutiarani A, Wahyuni L, Madlazim (2013) Survey dan Analisis Seismisitas Wilayah Jawa Timur Berdasarkan Data Gempa Bumi Periode 1999-2013 sebagai Upaya Mitigasi Bencana Gempa Bumi. Jurnal Penelitian Fisika dan Aplikasinya (JPFA) 3(2):19–27 ISSN : 2087–9946Google Scholar
  18. Sudibyakto (2008) Integration of spatio-temporal analysis of rainfall and community information system to reduce landslide risk in Indonesia. Indones J Geogr 40(1):78–93 (2008) ISSN 0024-9521, Faculty of Geography UGM and The Indonesian Geographers AssociationGoogle Scholar
  19. Verstappen HTH (2010) Indonesian landforms and plate tectonics. Jurnal Geologi Indones 5(3):197–207 Google Scholar
  20. Widianto A, Damen M (2014) Determination of Coastal Belt in the disaster prone area: a case study in the coastal area of Bantul District, Yogyakarta, Indonesia. Indones J Geogr 46(2):125–137 ISSN 0024–9521 2014 Faculty of Geography UGM and The Indonesian Geographers AssociationCrossRefGoogle Scholar
  21. Yue H, Lay T, Rivera L, Bai Y, Yamazaki Y, Cheung KF, Hill EM, Sieh K, Kongko W, Muhari A (2014) Rupture process of the 2010 mw 7.8 Mentawai tsunami earthquake from joint inversion of near-field hr-GPS and teleseismic body wave recordings constrained by tsunami observations. J Geophys Res Solid Earth 119:5574–5593. CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2017

Authors and Affiliations

  • Alfath Abu Bakar
    • 1
  • Djati Mardiatno
    • 2
  • Muh Aris Marfai
    • 2
    Email author
  1. 1.Geophysics Station of KendariIndonesian Agency of Meteorology Climatology and GeophysicsKendariIndonesia
  2. 2.Faculty of GeographyUniversitas Gadjah MadaYogyakartaIndonesia

Personalised recommendations