Arabian Journal of Geosciences

, 10:415 | Cite as

Statistical analysis and source rock of the Minim-Martap plateau bauxite, Cameroon

  • Daniel G. Nyamsari
  • M. Gurhan Yalcin
Original Paper


The Minim-Martap plateau bauxite deposit, located between the Minim and the Martap villages, is one of the 11 plateaus within the Minim-Martap bauxite region. The plateau has an elevation of 1294 m above sea level, with three to more 30 m thickness of bauxite horizon. These plateaus were formed as result of supergene weathering of volcanic rocks occurring as dissected flow basalt landscapes that form relatively flat plateau rising steeply from the surrounding granites. The bauxite deposit of the plateau is lateritic, with the surface of the plateau been completely covered by indurated caps. Seventeen bauxite samples were collected from the plateau and prepared for geochemical analysis. Whole rock analysis was carried out using the X-ray Fluorescence technique and ICP-MS was used for trace elements investigation. Statistical analysis reveals that average values of Al2O3 (54.87%), Fe2O3 (7.17%), SiO2 (2.44%), and TiO2 (4.54%) indicate the plateau bauxite deposit is an of a world class standard with very little impurities compared to the standard major element contents of bauxite (> 40% A12O3, less than < 20% Fe2O3, and less than < 8% combined SiO2). Abundant trace elements include Zr, Ce, Sr, V, Ba, La, Nd, Ga, and Nb. Weathering due to chemical alteration indices using the Ruxton ratio and CIA approaches revealed the plateau have undergone intense weathering process that formed the bauxite deposit. Three different classification systems indicate it as a low iron-rich bauxite deposit. Precursor rock investigation indicates the origin of the bauxite is mafic, basaltic andesite igneous rocks with intermediate pH (basic–acidic characteristic).


Minim-Martap plateau Bauxite Source rocks and classification Geostatistic Geochemistry 



This study contains a part of Scientific Research Projects (BAP), number FYL-2015-449 of Akdeniz University.


The financial support of the Scientific Research Projects Unit of Akdeniz University is gratefully acknowledged.

Compliance with ethical standards


This research work is in no way out to contradict results of exploration companies working on the Minim-Martap bauxite due to the difference in our sampling methods.


  1. Albarède F (2003) Geochemistry: an introduction. Cambridge University Press. isbn:978-0-521-89148-6Google Scholar
  2. Bahlburg H, Dobrzinski N, (2009) A review of the Chemical Index of Alteration (CIA) and its application to the study of Neoproterozoic glacial deposits and climate transitions The Geological Record of Neoproterozoic Glaciations. Geological Society, London, Memoir; in press, in: Arnaud, E., Halverson, G.P. & Shields, G.A., (eds.)Google Scholar
  3. Banfield JF, Eggleton RA (1989) Apatite replacement and REE mobilization, ractionation, and fixation during weathering. Clay Clay Miner 37:113–127CrossRefGoogle Scholar
  4. Bárdossy G (1982) Karst bauxites: bauxite deposits on carbonate rocks. Elsevier Scientific Publication, Amsterdam, p 441Google Scholar
  5. Bárdossy G, Aleva GJJ (1990) Lateritic bauxites: developments in economic geology, vol 27. Elsevier Scientific Publication, Amsterdam, pp 624Google Scholar
  6. Boaka M, (2007). Mineralogical features and geological origin of the sapphires from the Mayo Kewol paleoplacer in Adamawa Region (North-Cameroon) pp. 125–142Google Scholar
  7. Bogatyrev BA, Demina VN, Zhukov VV, (1987) Formation factors and ore material sources of bauxites. Exogenic ore formation: Al, Ni, Mn. Nauka, Moscow, 112–119Google Scholar
  8. Bogatyrev BA, Zhukov VV, Tsekhovsky YG (2009) Formation conditions and regularities of distribution of large and superlarge bauxite deposits. Lithol Miner Resour 44(2):135–151CrossRefGoogle Scholar
  9. Boruvka L, Vacek O, Jehlicka J (2005) Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils. Geoderma 128:289–300CrossRefGoogle Scholar
  10. Boulange B, Bouzat G, Pouliquen M (1996) Mineralogical and geochemical characteristics of two bauxitic profiles, Fria, Guinea Republic. Mineral Deposita 31(5):432–438CrossRefGoogle Scholar
  11. Burt DM (1989) Compositional and phase relations among rare earth element minerals. In: Lipin BR and Mckay GA (Eds.); Geochemistry and Mineralogy of Rare Earth Elements. The Mineralogical Society of America, Washington D.C., pp. 259–307Google Scholar
  12. CAL, Environmental and Social Impact Assessment Study for the Proposed Bauxite Mining Project at Minim-Martap & Ngaoundal Deposits, Adamawa Region, Republic of Cameroon, VIMTA Labs Limited, India Rainbow Environment Consult, Cameroon (
  13. Calagari AA, Abedini A (2007) Geochemical investigations on Permo-Triassic bauxite horizon at Kanisheeteh, east of Bukan, West-Azarbaidjan, Iran. J Geochem Explor 94:1–18CrossRefGoogle Scholar
  14. Calagari AA, Kangarani F, Abedini A (2010) Geochemistry of major, trace, and rare earth elements in Biglar Permo-Triassic bauxite deposit, Northwest of Abgarm, Ghazvin Province, Iran. J Sci, Islamic Republic Iran 21(3):225–236Google Scholar
  15. Child D (1970) The essential of factor analysis. Hold Rinehart and Winston Ltd, London, p 107Google Scholar
  16. Clark AM, (1984) Mineralogy of the rare earth elements. In: Henderson, P. (Ed.), Elsevier, Amsterdam, Rare Earth Element Geochemistry, pp. 33–61Google Scholar
  17. Condie K (1991) Another look at REEs in shales. Geochim Cosmochim Acta 55:2527–2531CrossRefGoogle Scholar
  18. Davidson JP, Ferguson KM, Colucci MT, Dungan MA (1987) The origin of magmas from the San Pedro-Pellado Volcanic Dokhan Volcanics complex, S Chile: multicomponent sources and open system evolution. Contrib Mineral Petrol 100:429–445CrossRefGoogle Scholar
  19. Eno Belinga SM (1972) L’altération des roches basaltiques et le processus de bauxitisation dans l’Adamaoua (Cameroun). Thèse Doc. d’Etat. Univ. de Paris, VI, p 571Google Scholar
  20. Eno Belinga SM, (1984) Géologie du Cameroun. Introduction – Géodynamique externe. Géologie historique. Géologie du pétrole. Univ. de Yaoundé I. 307.Google Scholar
  21. Eno Belinga SM (1986) Il y a 600 millions d’années. Paléoclimats et métaux, nonmétaux et substances minérales utiles du Cameroun. ALITAF Yaoundé, p 128Google Scholar
  22. Evans AM (1993) Ore geology and industrial minerals—an introduction. Blackwell, London, p 389Google Scholar
  23. Facchinelli A, Sacchi E, Mallen L (2001) Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ Pollut 114:313–324CrossRefGoogle Scholar
  24. Fedo CM, Nesbitt HW, Young GM (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23:921–924CrossRefGoogle Scholar
  25. Fleischer M, (1987) Glossary of mineral species. Mineralogic record Inc., Tuscon, AZ, 5, pp. 227Google Scholar
  26. Fleischer, M. and Altschuler, Z.S. 1986. The lanthanides and yttrium in minerals of the apatite group. An analysis of the available data. Neues Jahrbuch fur Mineralogie–Monatshefte, pp. 467–480Google Scholar
  27. Geze B. (1943) Geographie et geologie du Cameroun occidental. Memoires Museum National d’Histoire Naturelle, XVII, pp. 320.Google Scholar
  28. Greenwood NN, Earnshaw A (1997) Chemistry of the Elements, 2nd edn. Butterworth-Heinemann, OxfordGoogle Scholar
  29. Hanilci N (2013) Geological and geochemical evolution of the Bolkardagi bauxite deposits, Karaman, Turkey: transformation from shale to bauxite. J Geochem Explor 133:118–137CrossRefGoogle Scholar
  30. Horbe A, Costa M (1999) Geochemical evolution of a lateritic Sn–Zr–Th–Nb–Y–REE-bearing ore body derived from apogranite: the case of Pitinga, Amazonas—Brazil. J Geochem Explor 66:339–351CrossRefGoogle Scholar
  31. Jadhav GN, Sharma N, Priyanka S, (2012) Characterization of bauxite deposit from Kachchh Area, Gujara J Geol Soc India, 80, pp. 351–362Google Scholar
  32. Jason RP, Velbel AM (2003) Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rock. Elsevier; Chemical Geology 202:397–416CrossRefGoogle Scholar
  33. Jöreskog KG, Klovan JE, Reyment RA (1976) Geological factor analysis. Elservier, Amsterdam, p 178Google Scholar
  34. Koc S, Deger MA (1991) Payas (Hatay) bolgesi boksitli demir cevherlesmesinin olusumu; Maden Tetkik ve Arama. Gen Mud Derg 113:115–126 (in Turkish)Google Scholar
  35. Kurtz AC, Derry LA, Chadwick OA, Alfano M (2000) Refractory element mobility in volcanic soils. Geology 28:683–686CrossRefGoogle Scholar
  36. Laskou M (1991) Concentrations of rare earths in Greek bauxites. Acta Geol Hung 34(4):195–404Google Scholar
  37. Lawley DN, Maxwell AE, (1971) Factor analysis as a statistical method, Butterworth and co., ltd., London, 2, pp. 153Google Scholar
  38. Le Marechal A (1976) Geologie et geochimie des sources thermominerales du Cameroon. Trav Doc ORSTOM 59:179Google Scholar
  39. Lide DR (2008) CRC handbook of chemistry and physics, 88th edn. Boca Raton, Florida, Taylor & Francis Group, p 2640Google Scholar
  40. Liu X, Qingfei W, Jun D, Qizuan Z, Silei S, Jianyin M (2010) Mineralogical and geochemical investigations of the Dajia Salento-type bauxite deposits, western Guangxi, China. J Geochem Explor 105:137–152CrossRefGoogle Scholar
  41. Maclean WH, Barrett TJ (1993) Lithogeochemical techniques using immobile elements. Geochemical Exploration 48:109–133CrossRefGoogle Scholar
  42. Maclean WH, Kranidiotis P (1987) Immobile elements as monitors of mass transfer in hydrothermal alteration; Phelps Dodge massive sulfide deposit, Matagami, Quebec. Econ Geol 82:951–962CrossRefGoogle Scholar
  43. Micó C, Peris M, Recatala L, Sanchez J (2006) Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere 65(5):863–872CrossRefGoogle Scholar
  44. Miyawaki R, Nakai I (1987) Crystal structures of rare earth minerals. Rare Earths (Kidorui) 11:1–133Google Scholar
  45. Miyawaki R, Nakai I (1988) Crystal structures of rare earth minerals. 1st Supplement (1988 C.S.R.M.) Rare Earths (Kidorui) 13:1–42Google Scholar
  46. Moreau C, Regnoult JM, Déruelle B, Robineau B (1987) A new tectonic model for the Cameroon Line, Central Africa. Tectonophysics 139:317–334CrossRefGoogle Scholar
  47. Mutakyahwa MKD, Ikingura JR, Mruma AH (2003) Geology and geochemistry of bauxite deposits in Lushoto District, Usambara Mountains, Tanzania. J Afr Earth Sci 36(2003):357–369CrossRefGoogle Scholar
  48. Neil NG, Gian PL (1993) Bauxite. Geosci Can 20(1):9–16Google Scholar
  49. Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 199:715–717CrossRefGoogle Scholar
  50. Ozlu N (1983) Trace element contents of Karst Bauxites and their parent rocks in the Mediterranean belt. Mineral Deposita 18:469–476CrossRefGoogle Scholar
  51. Ozturk H, Hein JR, Hanilci N (2002) Genesis of the Dogankuzu and Mortas bauxite depoists, Taurides, Turkey: separation of Al, Fe and Mn and implications for passive margin metallogeny. Econ Geol 97:1063–1077CrossRefGoogle Scholar
  52. Palme H, O’Neill HStC, (2005) Cosmochemical estimates of mantle composition. In the mantle and Core. Edited by Richard W. Carlson.: Elsevier ltd., Oxford, pp. 1–38Google Scholar
  53. Panahi A, Young GM, Rainbird RH (2000) Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Quebec, Canada. Geochim Cosmochim Acta 64(13):2199–2220CrossRefGoogle Scholar
  54. Retallack GJ (2010) Lateritization and bauxitization events. Econ Geol 105:655–667CrossRefGoogle Scholar
  55. Schellmann W (1982) Eine neue Laterit definition. Geologisches Jahrbuch-Reihe D 58:31–47Google Scholar
  56. Shaw DM (1964) Interprétation géochemique des éléments en traces dans les roches cristallines. Masson et Cie, ParisGoogle Scholar
  57. Solodov NA, Semenov EI, Burkov VV (1987) Geological handbook for heavy Lithophile rare metals (in Russian). Nedra Press Moscow 60:438Google Scholar
  58. Taylor SR (1964) Abundance of chemical elements in the continental crust: a new table. Geochimicu et Cosmochimicn Acta 28:1273–1285CrossRefGoogle Scholar
  59. Valeton I (1972) Bauxites, Developments in soil Science 1. Elsevier Publishing Company Amsterdam, LondonGoogle Scholar
  60. Valeton I, Biermann M, Reche R, Rosenberg F (1987) Genesis of nickel laterites and bauxites in Greece during the Jurassic and Cretaceous, and their relation to ultrabasic parent rocks. Ore Geol Rev 2:359–404CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2017

Authors and Affiliations

  1. 1.Department of Geological SciencesAkdeniz UniversityAntalyaTurkey

Personalised recommendations